Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7135
DC FieldValueLanguage
dc.contributor.authorallSettimi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.date.accessioned2011-10-03T06:49:02Zen
dc.date.available2011-10-03T06:49:02Zen
dc.date.issued2011-09-12en
dc.identifier.urihttp://hdl.handle.net/2122/7135en
dc.description.abstractThis report discusses the performance of electrical spectroscopy using a resistivity/ permittivity (RESPER) probe to measure salinity s and volumetric content θW of water in concrete and terrestrial soil. A RESPER probe is an induction device for spectroscopy which performs simultaneous noninvasive measurements of electrical resistivity 1/σ and relative dielectric permittivity εr of a subjacent medium. Numerical simulations show that a RESPER probe can measure σ and ε with inaccuracies below a predefined limit (10%) up to the high frequency band. Conductivity is related to salinity, and dielectric permittivity to volumetric water content using suitably refined theoretical models that are consistent with predictions of the Archie and Topp empirical laws. The better the agreement, the lower the hygroscopic water content and the higher the s; so closer agreement is reached with concrete containing almost no bonded water molecules, provided these are characterized by a high σ. The novelty here is application of a mathematical–physical model to the propagation of measurement errors, based on a sensitivity functions tool. The inaccuracy of salinity (water content) is the ratio (product) between the conductivity (permittivity) inaccuracy, as specified by the probe, and the sensitivity function of the salinity (water content) relative to the conductivity (permittivity), derived from the constitutive equations of the medium. The main result is the model prediction that the lower the inaccuracy of the measurements of s and θW (decreasing by as much as an order of magnitude, from 10% to 1%), the higher the σ; so the inaccuracy for soil is lower. The proposed physical explanation is that water molecules are mostly dispersed as H+ and OH- ions throughout the volume of concrete, but are almost all concentrated as bonded H2O molecules only at the surface of soil.en
dc.language.isoEnglishen
dc.publisher.nameIstituto Nazionale di Geofisica e Vulcanologiaen
dc.relation.ispartofAnnals of Geophysicsen
dc.relation.ispartofseries4/54 (2011)en
dc.subjectExplorative Geophysicsen
dc.subjectConcretes and Terrestrial Soilsen
dc.subjectMethods of non-destructive Testingen
dc.subjectElectrical Resistivity and Salinityen
dc.subjectPermittivity and Volumetric Water Contenten
dc.titlePerformance of electrical spectroscopy using a RESPER probe to measure salinity and water content of concrete and terrestrial soilen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber400-413en
dc.identifier.URLhttp://arxiv.org/abs/1006.4307en
dc.identifier.URLhttp://www.annalsofgeophysics.eu/index.php/annals/article/view/4966en
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneousen
dc.identifier.doi10.4401/ag-4966en
dc.relation.referencesArchie, G. E. (1942). The electrical resistivity log as an aid in determining some reservoir characteristics, Trans. AIME, 146, 54-62. Banin, A. and A. Amiel (1970). A correlation study of the chemical and physical properties of a group of natural soils of Israel, Geoderma, 3, 185-198. Carcione, J. M., G. Seriani and D. Gei (2003). Acoustic and electromagnetic properties of soils saturated with salt water and NAPL, J. Appl. Geophys., 52, 177-191. Cheeseman, C. R., S. Asavapisit and J. Knight (1998). Effect of uniaxially pressing ordinary Portland cement pastes containing metal hydroxides on porosity, density, and leaching, Cement Concrete Res., 28, 1639-1653. Corwin, D. L. and S. M. Lesch (2005a). Characterizing soil spatial variability with apparent soil electrical conductivity I. Survey protocols, Comput. Electron. Agr., 46, 103-133. Corwin, D. L. and S. M. Lesch (2005b). Characterizing soil spatial variability with apparent soil electrical conductivity Part II. Case study, Comput. Electron. Agr., 46, 135-152. Debye, P. (1929). Polar Molecules, Leipzig. De Loor, G. P. (1964). Dielectric properties of heterogeneous mixtures with a polar constituent, Appl. Sci. Res. 11, 310-320. Del Vento, D. and G. Vannaroni (2005). Evaluation of a mutual impedance probe to search for water ice in the Martian shallow subsoil, Rev. Sci. Instrum., 76, 084504 (8 pages). Dirksen, C. and S. Dasberg (1993). Improved calibration of time domain reflectometry soil water content measurements, Soil Sci. Soc. Am. J., 57, 660-667. Friedman, S. P. (1998). A saturation degree-dependent composite spheres model for describing the effective dielectric constant of unsaturated porous media, Water. Resour. Res., 34, 2949-2961. Frolich, H. (1990). Theory of Dielectrics, Oxford University Press, Oxford. González-Corrochano, B., J. Alonso-Azcárate and M. Rodas (2009). Characterization of lightweight aggregates manufactured form washing aggregate sludge and fly ash, Resour. Conserv. Recycl., 53, 571-581. Grard, R. (1990a). A quadrupolar array for measuring the complex permittivity of the ground: application to earth prospection and planetary exploration, Meas. Sci. Technol., 1, 295-301. Grard, R. (1990b). A quadrupole system for measuring in situ the complex permittivity of materials: application to penetrators and landers for planetary exploration, Meas. Sci. Technol., 1, 801-806. Grard, R. and A. Tabbagh (1991). A mobile four electrode array and its application to the electrical survey of planetary grounds at shallow depth, J. Geophys. Res., 96, 4117-4123. Halabe, U. B., A. Sootodehnia, K. R. Maser and E. A. Kausel (1993). Modelling the electromagnetic properties of concrete, ACI Mater. J., 90, 552-563. Jankovic, D. and J. Öhman (2001). Extraction of in-phase and quadrature components by IF-sampling, Masters Thesis, Department of Signals and Systems, Cahlmers University of Technology, Goteborg, 80 pp. Klein, L. A. and C. T. Swift (1977). An improved model for the dielectric constant of sea water at microwave frequencies, IEEE T. Antenn. Prog., 25, 104-111. Murray-Smith, D. J. (1987). Investigations of methods for the direct assessment of parameter sensitivity in linear closed-loop control systems, in Complex and Distributed Systems: Analysis, Simulation and Control, S. G. Tzafestas and P. Borne (Editors), North-Holland, Amsterdam, 323-328. Robert, A. (1998). Dielectric permittivity of concrete between 50 MHz and 1 GHz and GPR measurements for building materials evaluation, J. Appl. Geophys., 40, 89-94. Robinson, D. A., J. D. Cooper and C. M. K. Gardner (2002). Modelling the relative permittivity of soils using soil hygroscopic water content, J. Hydrol., 255, 39-49. Roth, K., R. Schulin, H. Flühler, and W. Attinger (1990). Calibration of time domain reflectometry for water content measurement using a composite dielectric approach, Water. Resour. Res., 26, 2267-2273. Schön, J. H. (1996). Physical properties of rocks – Fundamentals and principles of petro-physics, in Handbook of Geophysical Exploration, K. Helbig and S. Treitel (Editors), Sec. 1, Seismic exploration, Vol. 18, Redwood Books, Great Britain, Trowbridge. Sen, P. N., C. Scala and M. H. Cohen (1981). A self-similar for sedimentary rocks with application to the dielectric constant of fused glass beads, Geophysics, 46, 781-795. Settimi, A., A. Zirizzotti, J. A. Baskaradas and C. Bianchi (2010a). Inaccuracy assessment for simultaneous measurement of resistivity and permittivity applying sensitivity and transfer function approaches, Ann. Geophys., 53, 1-19; ibid., Earth-prints, http://hdl.handle.net/2122/6111 (2010); ibid., arXiv:0908.0641v3 [physics.geophysiscs] (2009). Settimi, A., A. Zirizzotti, J. A. Baskaradas and C. Bianchi (2010b). Optimal requirements of a data acquisition system for a quadrupolar probe employed in electrical spectroscopy, Ann. Geophys., 53, 11-26; ibid., Earth-prints, http://hdl.handle.net/2122/6405 (2010); ibid., arXiv:0908.0648v4 [physics.geophysiscs] (2009). Settimi, A., G. Tutone, J. A. Baskaradas, C. Bianchi, A. E. Zirizzotti, G. Santarato (2011). Preliminary design of a RESPER probe prototype, configured in a multi dipole-dipole array, Rapporti Tecnici INGV 191 (2011); ibid., Earth-prints, http://hdl.handle.net/2122/7003; ibid., arXiv 1104.2743v2 [physics.geo-ph][Instrumentation and Detectors (physics.ins-det)] (2011). Tabbagh, A., A. Hesse and R. Grard (1993). Determination of electrical properties of the ground at shallow depth with an electrostatic quadrupole: field trials on archaeological sites, Geophys. Prospect., 41, 579-597. Topp, G. C., J. L. Davis and A. P. Annan (1980). Electromagnetic determination of soil water content: measurements in coaxial transmission lines, Water. Resour. Res., 16, 574-582. Tsui, F. and S. L. Matthews (1997). Analytical modelling of the dielectric properties of concrete for subsurface radar applications, Constr. Build. Mater., 11, 149-161. Vannaroni, G., E. Pettinelli, C. Ottonello, A. Cereti, G. Della Monica, D. Del Vento, A. M. Di Lellis, R. Di Maio, R. Filippini, A. Galli, A. Menghini, R. Orosei, S. Orsini, S. Pagnan, F. Paolucci, A. Pisani R., G. Schettini, M. Storini and G. Tacconi (2004). MUSES: multi-sensor soil electromagnetic sounding, Planet. Space Sci., 52, 67-78.en
dc.description.obiettivoSpecifico3.8. Geofisica per l'ambienteen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorSettimi, A.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.orcid0000-0002-9487-2242-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
4966-8253-1-PB.pdfPDF Reprint Article506.83 kBAdobe PDFView/Open
4966-7337-1-EDcpb.docWord Author Manuscript710 kBMicrosoft WordView/Open
Show simple item record

WEB OF SCIENCETM
Citations 20

1
checked on Feb 10, 2021

Page view(s) 50

152
checked on Mar 27, 2024

Download(s) 50

283
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric