Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7129
DC FieldValueLanguage
dc.contributor.authorallPingue, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallPetrazzuoli, S. M.; Study Centre PLINIVS, University of Naples ‘‘Federico II’’, Naples, Italyen
dc.contributor.authorallObrizzo, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallTammaro, U.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallDe Martino, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallZuccaro, G.; Study Centre PLINIVS, University of Naples ‘‘Federico II’’, Naples, Italyen
dc.date.accessioned2011-09-29T06:16:14Zen
dc.date.available2011-09-29T06:16:14Zen
dc.date.issued2011en
dc.identifier.urihttp://hdl.handle.net/2122/7129en
dc.description.abstractIn this work we illustrate the results of some laboratory and full scale experiments which have the purposes of analysing the performance of different types of monitoring equipments in detection of damage level in masonry buildings. Such experiments involved monitoring, by means of optical fibre strain-metre and total laser station, of a selected building that, owing to its position in the active caldera of the Campi Flegrei (Southern Italy), could undergo remarkable ground shaking and large, although very slow, ground movements (bradyseismic crises) of volcanic origin. The field geodetic monitoring has been realised by an automatic system of topographical 3D survey, based on two automatic Total Station Leica TCA2003 and by increasing the number of benchmarks of the levelling network in the area near the building. The experiments have shown that structure deformations caused by elastic phase, when the building undergoes elastic deformation, is close or under the limit of detection through laser total station (about 1–2 mm), while, when the damage occurs, deformations increase up to values beyond 10–20 mm easily detectable by geodetic methods. The optical fibre monitoring provides good results in elastic phase, whereas as the damage level rises up the data become more and more difficult to understand. In conclusion the paper shows that the geodetic techniques are very useful in structural quasi real-time monitoring for analysing the behaviour of masonry buildings damaged by ground movements induced by landslide phenomena, bradyseism or intrinsic structural yielding.en
dc.language.isoEnglishen
dc.publisher.nameELSEVIERen
dc.relation.ispartofMeasurementen
dc.relation.ispartofseries/44(2011)en
dc.subjectGround deformationen
dc.subjectMonitoring systemen
dc.subjectCampi Flegrei bradyseismen
dc.subjectBuilding damage detectionen
dc.titleMonitoring system of buildings with high vulnerability in presence of slow ground deformations (The Campi Flegrei, Italy, case)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1628-1644en
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoringen
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniquesen
dc.identifier.doi10.1016/j.measurement.2011.06.015en
dc.relation.references[1] A. Amoruso, L. Crescentini, A.T. Linde, I.S. Sacks, R. Scarpa, P. Romano, A horizontal crack in a layered structure satisfies deformation for the 2004–2006 uplift at Campi Flegrei, Geophys. Res. Lett. 34 (L22313) (2007) 1–2, doi:10.1029/2007GL031644. [2] F. Barberi, G. Corrado, F. Innocenti, G. Luongo, Phlegraean fields 1982–1984: brief chronicle of a volcano emergency in a densely populated area, Bull. Volcanol. 47 (2) (1984) 175–185. [3] M.D. Boscardin, E.J. Cording, Building response to excavationinduced settlement, J. Geotechnical Eng. ASCE 115 (1989) 1–21. [4] D. Capecchi, F. Vestroni, Identification of finite element models in structural dynamics, Eng. Struct. 15 (1993) 21–30. [5] A. Cherubini, S.M. Petrazzuoli, G. Zuccaro, Vulnerabilità sismica area flegrea, GNDT-CNR, Prefettura di Napoli, 2001. [6] A. De Stefano, D. Sabia, L. Sabia, Probabilistic neural networks for seismic damage mechanisms prediction, Earth Eng. Struct. Dyn. 28 (1999) 807–821. [7] C. Dubois, Pozzuoles, Antique; Historie et topographies, Albert Fontemoing, Paris, 1907. pp. 249–268. [8] T.W. Graver, D. Inaudi, J. Doornink, Growing market acceptance for fiber-optic solutions in civil structures, in: International Symposium on Advances and Trends in Fiber Optics and Applications October 11–14, 2004.[9] R.T. Gunter, The Submerged Greek and Roman Foreshore near Naples, Parker and Son, Loescher, Oxford, Rome, 1903. [10] D. Inaudi, State of the art in fiber optic sensing technology and EU structural health monitoring projects, in: First International Conference on Structural Health Monitoring and Intelligent Infrastructure, Tokyo, November 13–15, 2003. [11] D. Inaudi, N. Casanova, B. Glisic, Long-term deformation monitoring of historical constructions with fiber optic sensors, in: Third International Seminar on Structural Analysis of Historical Constructions, Guimaraes, Portugal, November, University of Minho Publisher, 2001, pp. 421–430. [12] M. Meo, G. Zumpano, On optimal sensor placement techniques for a bridge structure, Eng. Struct. 27 (2005) 1488–1497. [13] M. Meo, G. Zumpano, X. Meng, E. Cosser, G. Roberts, A. Dodson, Measurements of dynamics properties of a medium span suspension bridge by using the wavelet transforms, Mech. Syst. Signal Process. 20 (2006) 112–1133. [14] Ch. Morhange, M. Bourcier, J. Laborel, C. Gialanella, J.P. Goiran, L. Crimaco, L. Vecchi, New data on historical relative sea level movements in Pozzuoli, Phlaegrean fields Southern Italy, Phys. Chem. Earth A 24 (1999) 4349–4354. [15] A. Niccolini, Rapporto sulle acque che invadono il pavimento dell’antico edifizio detto Tempio di Giove Serapide, Stamperia Reale, Napoli, 1829. [16] G. Orsi, L. Civetta, C. Del Gaudio, S. de Vita, M.A. Di Vito, R. Isaia, S.M. Petrazzuoli, G. Ricciardi, C. Ricco, Short-term ground deformations and seismicity in the resurgent Campi Flegrei caldera (Italy): an example of active block-resurgence in a densely populated area, in: G. Orsi, L. Civetta, G.A. Valentine (Eds.), Special Issue ‘‘Volcanism in the Campi Flegrei’’, J. Volcanol. Geotherm. Res. 91 (2–4) (1999) 415– 451. [17] A. Parascandola, I Fenomeni Bradisismici del Serapeo di Pozzuoli, Napoli, 1947, p. 156. [18] F. Pingue, P. De Martino, F. Obrizzo, C. Serio, U. Tammaro, Monitoraggio del bradisismo flegreo, nel periodo maggio 2004 – marzo 2006, attraverso misure CGPS e di livellazione, X Conferenza ASITA, Bolzano, II, 2006, pp. 1583–1588. [19] S. Sumitro, Y. Okada, K. Saitoh, S. Takanashi, D. Inaudi, Long-gage optical fiber sensors monitoring on deteriorated structure deformational properties, in: First International Conference on Structural Health Monitoring and Intelligent Infrastructure, Tokyo, November 13–15, 2003. [20] C. Ricco, I. Aquino, S.E. Borgstrom, C. Del Gaudio, A study of tilt change recorded from July to October 2006 at the Phlegraean fields (Naples, Italy), Ann. Geophys. 50 (5) (2007) 661–674. [21] H. Sohn, R.C. Farrar, M.F. Hemez, D.D. Shunk, W.D. Stinemates, R.B. Nadler, J.J. Czarnecki, A Review of Structural Health Monitoring Literature: 1996–2001, Los Alamos National Laboratory Report, LA- 13976-MS, 2004. [22] C. Troise, G. De Natale, F. Pingue, F. Obrizzo, P. De Martino, U. Tammaro, E. Boschi, Renewed ground uplift at Campi Flegrei caldera (Italy): New insight on magmatic processes and forecast, Geophys. Res. Lett. 34 (3) (2007) L03301, doi:10.1029/2006GL028545. [23] C. Troise, G. De Natale, F. Pingue, U. Tammaro, P. De Martino, F. Obrizzo, E. Boschi, A new uplift episode at Campi Flegrei caldera (Southern Italy): implication for unrest interpretation and eruption hazard evaluation, in: J. Gottsmann, J. Marti (Eds.), Developments in Volcanology, vol. 10, Elsevier, Amsterdam, 2008, pp. 376–392. [24] M.P. Whelan, D. Albrecht, A. Capsoni, Remote structural monitoring of the Cathedral of Como using an optical fiber Bragg sensor system, in: Daniele Inaudi, Eric Udd (Eds.), Proceedings of SPIE, Smart Structures and Materials 2002: Smart Sensor Technology and Measurement Systems, vol. 4694, 2002, pp. 242–252. [25] G. Zuccaro, S.M. Petrazzuoli, F. Pingue, F. Obrizzo, Centro Monitoraggio Suolo e Costruito in Aree Soggette a Movimenti Lenti, in: Piattaforme Evolutiva di Telecomunicazioni e di Information Technology per l’Offerta di Servizi al settore Ambiente-Petit OSA-ARACNE Editrice Srl Roma, 2007. ISDN: 978- 88-548-1184-3-Giugno (in Italian).en
dc.description.obiettivoSpecifico1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attiveen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorPingue, F.en
dc.contributor.authorPetrazzuoli, S. M.en
dc.contributor.authorObrizzo, F.en
dc.contributor.authorTammaro, U.en
dc.contributor.authorDe Martino, P.en
dc.contributor.authorZuccaro, G.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentStudy Centre PLINIVS, University of Naples ‘‘Federico II’’, Naples, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentStudy Centre PLINIVS, University of Naples ‘‘Federico II’’, Naples, Italyen
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.grantfulltextrestricted-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptCentro PLINIUS-LUPT, Università degli Studi di Napoli “Federico II”, Italy-
crisitem.author.orcid0000-0002-9282-2786-
crisitem.author.orcid0000-0002-2685-6064-
crisitem.author.orcid0000-0002-9584-3347-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
PinPet-11.pdf4.28 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

11
checked on Feb 10, 2021

Page view(s) 10

499
checked on Sep 7, 2024

Download(s)

50
checked on Sep 7, 2024

Google ScholarTM

Check

Altmetric