Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7116
DC FieldValueLanguage
dc.contributor.authorallInguaggiato, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallMazot, A.; GNS Science, Wairakei Research Centre, Department of Volcanology, Taupo, New Zealanden
dc.contributor.authorallTakeshi, O.; Tokai University, School of Science, Department of Chemistry, Kanagawa, Japanen
dc.date.accessioned2011-09-27T06:02:23Zen
dc.date.available2011-09-27T06:02:23Zen
dc.date.issued2011-06en
dc.identifier.urihttp://hdl.handle.net/2122/7116en
dc.description.abstractShallow magmas located beneath active volcanoes release volatiles both during eruptive activity and during inter-eruptive periods (passive degassing). The fluids in active volcanic areas rise directly from magma, and their composition is characterized mainly by H2O, CO2, SO2, H2S, HF and HCl (condensable gases), and by some non-condensable gases (e.g. He, H2, N2, CO, CH4). The chemical composition of fumarolic gases can reflect the pressure, temperature and oxygen fugacity conditions of the deep magmatic source, provided that during their rise towards the surface, the gases do not undergo re-equilibration processes [Giggenbach 1980, Giggenbach 1996, Nuccio and Paonita 2001, Paonita et al. 2002]. As the equilibrium kinetics of several chemical reactions is much slower than the rising velocities of the gases, the gas molecular compositions often undergo quenching phenomena, so that the gases show temperature and pressure equilibria higher than their outlet values. The concentration of magmatic species or their molecular ratios can be determined by means of direct sampling of fumarole gases or by using telemetric methods of observation. The extensive parameters (mass output) of volcanic fluids, coupled with the intensive parameters described before, provide basic and useful information for the formulation of volcanic fluid degassing models [Italiano et al. 1997, Brusca et al. 2004, Inguaggiato et al. 2011]. The first step in the framework of the geochemical investigation of a volcanic system aimed at surveillance is the chemical and isotopic characterization of the fluids, and the putting forward of a geochemical model [Inguaggiato et al. 2011]; within this geochemical model, it is possible to interpret the observed changes in any single investigated parameter. The geochemical approach is to identify the following topics: • The main end-members involved in the studied system; • The possible type and degree of interaction processes: e.g. water-rock and gas-water interactions; • The mixing among the individual end-members; • The chemical and isotopic characterization of a possible hydrothermal system; • The formulation of a geochemical model.en
dc.language.isoEnglishen
dc.relation.ispartofAnnals of Geophysicsen
dc.relation.ispartofseries2/54(2011)en
dc.subjectGeochemical approachen
dc.subjectVolcanoes monitoringen
dc.titleMonitoring active volcanoes: The geochemical approachen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber115-119en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistryen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.identifier.doi10.4401/ag-5187en
dc.relation.referencesAiuppa, A., M. Burton, F. Muré and S. Inguaggiato (2004). Intercomparison of volcanic gas monitoring methodologies performed on Vulcano Island, Italy, Geophys. Res. Lett., 31, L02610; doi: 10.1029/2003GL018651. Aiuppa, A., S. Inguaggiato, A.J.S. McGonigle, M. O'Dwyer, C. Oppenheimer, M.J. Padgett, D. Rouwet and M. Valenza (2005). H2S fluxes from Mt. Etna, Stromboli and Vulcano (Italy) and implications for the sulfur budget at volcanoes, Geochim. Cosmochim. Acta, 69, 1861-1871. Aiuppa, A., C. Federico, G. Giudice, G. Giuffrida, R. Guida, S. Gurrieri, M. Liuzzo, M. Moretti and P. Papale (2009). The 2007 eruption of Stromboli volcano: insights from real-time measurement of the volcanic gas plume CO2/SO2 ratio, J. Volcanol. Geotherm. Res., 182, 221-230. Bruno, N., T. Caltabiano, and R. Romano (1999). SO2 emissions at Mt. Etna with particular reference to the period 1993-1995, Bull. Volcanol., 60, 405-411. Brusca, L., S. Inguaggiato, M. Longo, P. Madonia and R. Maugeri (2004). The 2002-2003 eruption of Stromboli (Italy): evaluation of the volcanic activity by means of continuous monitoring of soil temperature, CO2 flux, and meteorological parameters, Geochem. Geophys. Geosyst., 5, Q12001; doi: 10.1029/2004GC000732. Burton, M., P. Allard, A. La Spina and F. Muré (2007a). Magmatic gas composition reveals the source depth of slug-driven Strombolian explosive activity, Science; doi: 10.1126/science. 1141900. Burton, M.R., H.M. Mader and M. Polacci (2007b). The role of gas percolation in quiescent degassing of persistently active basaltic volcanoes, Earth Planet Sci. Lett., 264, 46-59. Capasso, G., Favara R. and S. Inguaggiato (1997) Chemical features and isotopic composition of gaseous manifestations on Vulcano Island (Aeolian Islands, Italy): an interpretative model of fluid circulation, Geochim. Cosmochim. Acta, 61, 3425-3440. Capasso, G. and S. Inguaggiato (1998). A simple method for the determination of dissolved gases in natural waters: An application to thermal waters from Vulcano island, Appl. Geochem., 13, 631-642. Cardellini, C., G. Chiodini and F. Frondini (2003). Application of stochastic simulation to CO2 flux from soil: Mapping and quantification of gas release, J. Geophys. Res., 108 (B9), ECV3.1- ECV3.13; doi: 10.1029/2002JB002165. Chiodini, G., F. Frondini and B. Raco (1996). Diffuse emission of CO2 from the Fossa crater, Vulcano Island (Italy), Bull. Volcanol., 58, 41-50. Chiodini, G., R. Cioni, M. Guidi, B. Raco and L. Marini (1998). Soil CO2 flux measurements in volcanic and geothermal areas, Appl. Geochem., 13, 543-552. Chiodini, G., D. Granieri, R. Avino, S. Caliro, A. Costa and C. Werner (2005). Carbon dioxide diffuse degassing and estimation of heat release from volcanic and hydrothermal systems, J. Geophys. Res., 110, B08204; doi: 10.1029/2004JB003542. Diliberto, I.S., S. Gurrieri and M. Valenza (2002). Relationships between diffuse CO2 emissions and volcanic activity on the island of Vulcano (Aeolian Islands, Italy) during the period 1984- 1994, Bull. Volcanol., 64, 219-228. Favara, R., S. Giammanco, S. Inguaggiato and G. Pecoraino (2001). Preliminary estimate of CO2 output from Pantelleria Island volcano (Sicily, Italy): evidence of active mantle degassing, Appl. Geochem., 16, 883-894. Galle, B., C. Oppenheimer, A. Geyer, A.J.S. McGonigle, M. Edmonds and L.A. Horrocks (2003). A miniaturised ultraviolet spectrometer for remote sensing of SO2 fluxes: A new tool for volcano surveillance, J. Volcanol. Geotherm. Res., 119, 241-254. Gerlach, T.M. and B.E. Nordlie (1975). The C-O-H-S gaseous systems. Part II: temperature, atomic composition, and molecular equilibria in volcanic gases, Am. J. Sci., 275, 377-394. Gerlach, T.M. (1993). Oxygen buffering of Kilauea volcanic gases and the oxygen fugacity of Kilauea basalt, Geochim. Cosmochim. Acta, 57, 795-814. Giammanco, S., S. Inguaggiato and M. Valenza (1998). Soil and fumarole gases of Mount Etna: geochemistry and relations with volcanic activity, J. Volcanol. Geotherm. Res., 81, 297-310. Giggenbach, W.F. (1980). Geothermal gas equilibria, Geochim. Cosmochim. Acta, 44, 2021- 2032. Giggenbach, W.F. (1996). Chemical composition of volcanic gases, In: R. Scarpa and R. Tilling (eds), Monitoring and Mitigation of Volcano Hazards, Springer-Verlag, Berlin, 221-256. Inguaggiato, S., G. Pecoraino and F. D'Amore (2000). Chemical and isotopical characterization of fluid manifestations of Ischia Island (Italy), J. Volcanol. Geotherm. Res., 99, 151-178. Inguaggiato, S. and A. Rizzo (2004). Dissolved helium isotope ratios in ground-waters: a new technique based on gas-water re-equilibration and its application to Stromboli volcanic system, Appl. Geochem., 19, 665-673. Inguaggiato, S., Y.A. Taran, F. Grassa, G. Capasso, R. Favara, N. Varley and E. Faber (2004). Nitrogen isotopes in thermal fluids of a forearc region ( Jalisco Block, Mexico): evidence for heavy nitrogen from continental crust, Geochem. Geophys. Geosyst., 5, Q12003; doi: 10.1029/2004GC000767. Inguaggiato, S., A.L. Martin-Del Pozzo, A. Aguayo, G. Capasso and R. Favara (2005). Isotopic, chemical and dissolved gas constraints on spring water from Popocatépetl (Mexico): evidence of gas-water interaction magmatic component and shallow fluids, J. Volcanol. Geotherm. Res., 141, 91-108. Inguaggiato, S, S. Hidalgo, B. Beate and J. Bourquin (2010). Geochemical and isotopic character ization of volcanic and geothermal fluids discharged from the Ecuadorian volcanic arc, Geofluids, 10, 525-541. Inguaggiato, S., F. Vita, D. Rouwet, N. Bobrowski, S. Morici and A. Sollami (2011). Geochemical evidence of the renewal of volcanic activity inferred from CO2 soil and SO2 plume fluxes: the 2007 Stromboli eruption (Italy), Bull. Volcanol., 73 (4), 443-456. Italiano, F., G. Pecoraino and P.M. Nuccio (1997). Steam output from fumaroles of an active volcano: Tectonic and magmatic-hydrothermal controls on the degassing system at Vulcano (Aeolian arc), J. Geophys. Res., 103, 29829-29842. Liotta, M., L. Brusca, F. Grassa, S. Inguaggiato, M. Longo and P. Madonia (2006). Geochemistry of rainfall at Stromboli volcano (Aeolian Islands): Isotopic composition and plume-rain interaction, Geochem. Geophys. Geosyst., 7, Q07006; doi: 10.1029/2006GC001288. Liotta, M., A. Paonita, A. Caracausi, M. Martelli, A. Rizzo and R. Favara (2010). Hydrothermal processes governing the geochemistry of the crater fumaroles Mount Etna volcano (Italy), Chem. Geol., 278, 92-104. Mazot, A., D. Rouwet, Y. Taran, S. Inguaggiato and N. Varley (2011). CO2 and He degassing at El Chichón volcano (Chiapas, Mexico): gas flux, origin, and relationship with local and regional tectonics, Bull. Volcanol., 73 (4), 423-441; doi: 10.1007/s00445-010-0443-y. McGonigle, A.J.S. (2005). Volcano remote sensing with ground-based spectroscopy, Phil. Trans. R. Soc. A, 363, 2915-2929; doi: 10.1098/rsta.2005.1668. Nuccio, P.M. and A. Paonita (2001). Magmatic degassing of multicomponent vapors and assessment of magma depth: application to Vulcano Island (Italy), Earth Planet Sci. Lett., 193, 467-481. Oppenheimer, C., P. Francis, M. Burton, A.J.H. Maciejewski and L. Boardman (1998). Remote measurement of volcanic gases by Fourier transform infrared spectroscopy, Appl. Phys., 67, 505-515. Paonita, A., R. Favara, P.M. Nuccio and F. Sortino (2002). Genesis of fumarolic emissions as inferred by isotope mass balances: CO2 and water at Vulcano Island, Italy, Geochim. Cosmochim. Acta, 66, 759-772. Pecoraino, G., L. Brusca, W. D'Alessandro, S. Giammanco, S. Inguaggiato and M. Longo (2005). Total CO2 output from Ischia Island volcano (Italy), Geochem. J., 39, 451-458. Rouwet, D., S. Inguaggiato, Y. Taran, N. Varley and J.A. Santiago (2008). Chemical and isotopic compositions of thermal springs,fumaroles and bubbling gases at Tacaná Volcano (Mexico– Guatemala): implications for volcanic surveillance, Bull. Volcanol., 59, 436-449. Taran, Y.A., A.D. Esikov and A.L. Cheshko (1986). Deuterium and Oxygen-18 in waters of Mutnovsky geothermal area, Geochem. Int., 4, 458-468. Taran, Y., T.P. Fisher, B. Pokrovsky, Y. Sano, M. Armienta and J.L. Macias (1998). Geochemistry of the volcano-hydrothermal system of El Chichón Volcano, Chiapas, Mexico, Bull. Volcanol., 59, 436-449. Werner, C. and C. Cardellini (2006). Comparison of carbon dioxide emissions with fluid upflow, chemistry, and geologic structures at the Rotorua geothermal system, New Zealand, Geothermics, 35, 221-238.en
dc.description.obiettivoSpecifico1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attiveen
dc.description.obiettivoSpecifico2.4. TTC - Laboratori di geochimica dei fluidien
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorInguaggiato, S.en
dc.contributor.authorMazot, A.en
dc.contributor.authorTakeshi, O.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentGNS Science, Wairakei Research Centre, Department of Volcanology, Taupo, New Zealanden
dc.contributor.departmentTokai University, School of Science, Department of Chemistry, Kanagawa, Japanen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptInstituto de Geofisica, UNAM, Mexico-
crisitem.author.deptTokai University, School of Science, Department of Chemistry, Kanagawa, Japan-
crisitem.author.orcid0000-0003-3726-9946-
crisitem.author.orcid0000-0002-4419-5618-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Geochemical monitoring approach.pdfMain article83.97 kBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

5
checked on Feb 7, 2021

Page view(s) 50

169
checked on Apr 17, 2024

Download(s) 50

217
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric