Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7085
DC FieldValueLanguage
dc.contributor.authorallBizzarri, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.date.accessioned2011-09-02T11:58:58Zen
dc.date.available2011-09-02T11:58:58Zen
dc.date.issued2011-08en
dc.identifier.urihttp://hdl.handle.net/2122/7085en
dc.description.abstractThe quantitative estimate of earthquake damage due to ground shaking is of pivotal importance in geosciences, and its knowledge should hopefully lead to the formulation of improved strategies for seismic hazard assessment. Numericalmodels of the processes occurring during seismogenic faulting represent a powerful tool to explore realistic scenarios that are often far from being fully reproduced in laboratory experiments because of intrinsic, technical limitations. In this paper we discuss the prominent role of the fault governing model, which describes the behavior of the fault traction during a dynamic slip failure and accounts for the different, and potentially competing, chemical and physical dissipative mechanisms. We show in a comprehensive sketch the large number of constitutive models adopted in dynamic modeling of seismic events, and we emphasize their prominent features, limitations, and specific advantages. In a quantitative comparison, we show through numerical simulations that spontaneous dynamic ruptures obeying the idealized, linear slip‐weakening (SW) equation and a more elaborated rate‐ and state‐dependent friction law produce very similar results (in terms of rupture times, peaks slip velocity, developed slip, and stress drops), provided that the frictional parameters are adequately comparable and, more importantly, that the fracture energy density is the same. Our numerical experiments also illustrate that the different models predict fault slip velocity time histories characterized by a similar frequency content; a feeble predominance of high frequencies in the SW case emerges in the frequency ranges [0.3, 1] and [11, 50] Hz. These simulations clearly indicate that, even forgiving the frequency band limitation, it would be very difficult (virtually impossible) to discriminate between two different, but energetically identical, constitutive models, on the basis of the seismograms recorded after a natural earthquake.en
dc.language.isoEnglishen
dc.publisher.nameAGUen
dc.relation.ispartofReviews of Geophysicsen
dc.relation.ispartofseries/49(2011)en
dc.subjectEarthquake mechanicsen
dc.subjectconstitutive equationsen
dc.titleOn the deterministic description of earthquakesen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberRG3002en
dc.identifier.URLhttp://www.bo.ingv.it/~bizzarrien
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolutionen
dc.identifier.doi10.1029/2011RG000356en
dc.description.obiettivoSpecifico3.1. Fisica dei terremotien
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorBizzarri, A.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.orcid0000-0001-8313-4124-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2011RG000356.pdf4.66 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 10

61
checked on Feb 10, 2021

Page view(s)

135
checked on Apr 17, 2024

Download(s)

26
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric