Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7072
DC FieldValueLanguage
dc.contributor.authorallMikhailov, A. V.; Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Troitsk, Russiaen
dc.contributor.authorallPerrone, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.date.accessioned2011-07-15T12:53:47Zen
dc.date.available2011-07-15T12:53:47Zen
dc.date.issued2011-03-18en
dc.identifier.urihttp://hdl.handle.net/2122/7072en
dc.description.abstractSeasonal (winter/summer) and solar cycle NmF2 variations as well as summer saturation effect in NmF2 have been analyzed using Millstone Hill incoherent scatter radar (ISR) daytime observations. A self‐consistent approach to the Ne(h) modeling has been applied to extract from ISR observations a consistent set of main aeronomic parameters and to estimate their quantitative contribution to the observed NmF2 variations. The retrieved aeronomic parameters are independent of uncertainties in thermosphere and solar EUV empirical models, and this is a distinguishing feature of the present consideration. Different temperatures in winter and in summer in the course of solar cycle overlapped on the O++N2 reaction rate coefficient temperature dependence result in different NmF2 dependences on solar activity: a steep practically linear increase with a tendency to turn up in January (contrary to international reference ionosphere prediction) and a slow increase with a tendency to saturate at high solar activity in July despite increasing solar EUV irradiation. In winter the EUV flux and thermospheric parameters provide approximately equal contributions to the NmF2 increase, while in summer the contribution of thermospheric parameters is small. Both in winter and in summer the variations of atomic oxygen [O] are small at the F2 layer peak, and its contribution is small compared to linear loss coefficient, b. It is shown that the summer saturation effect in NmF2 under high solar activity is not just reduced to O/N2 or EUV flux solar cycle variations but is determined by b via the g1 temperature dependence. A new mechanism (qualitative) to explain the December anomaly in NmF2 is proposed. It is based on the idea that the areas of atomic oxygen production and its loss are spatially separated and that time is required to transfer [O] from one area to the other where [O] associates in a three‐body collision. Therefore, under a 7% increase in the O2 dissociation rate due to the Sun‐Earth distance decrease in December–January compared to June–July, an accumulation of atomic oxygen should take place in the thermosphere in the vicinity of the December solstice resulting in a 21% NmF2 increase, which is close to the observed global December effect.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofJournal of Geophysical Researchen
dc.relation.ispartofseries/116 (2011)en
dc.subjectmid-latitude ionosphereen
dc.subjectthermosphere composition and chemistryen
dc.titleOn the mechanism of seasonal and solar cycle NmF2 variations: A quantitative estimate of the main parameters contribution using incoherent scatter radar observationsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberA03319en
dc.subject.INGV01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneousen
dc.subject.INGV01. Atmosphere::01.02. Ionosphere::01.02.01. Ion chemistry and compositionen
dc.subject.INGV01. Atmosphere::01.02. Ionosphere::01.02.02. Dynamicsen
dc.identifier.doi10.1029/2010JA016122en
dc.relation.referencesAponte, N., M. J. Nicolls, S. A. Gonzalez, M. P. Sulzer, M. C. Kelly, E. Robles, and C. A. Tepley (2005), Instantaneous electric field measurements and derived neutral winds at Arecibo, Geophys. Res. Lett., 32, L12107, doi:10.1029/2005GL022609. Appleton, E. V., and R. Naismith (1935), Some further measurements of upper atmospheric ionization, Proc. R. Soc. London, Ser. A, 150, 685–708, doi:10.1098/rspa.1935.0129. Balan, N., G. J. Bailey, B. Jenkins, P. B. Rao, and R. J. Moffett (1994), Variations of ionospheric ionization and related solar fluxes during an intense solar cycle, J. Geophys. Res., 99, 2243–2253, doi:10.1029/ 93JA02099. Banks, P. M., and G. Kockarts (1973), Aeronomy, Academic, San Diego, Calif. Barlier, F., P. Bauer, C. Jaeck, G. Thuillier, and G. Kockarts (1974), North– south asymmetries in the thermosphere during the last maximum of the solar cycle, J. Geophys. Res., 79, 5273–5285, doi:10.1029/ JA079i034p05273. Bilitza, D. (Ed.) (1990), International Reference Ionosphere 1990, NSSDC 90–22, Natl. Space Sci. Data Cent., Greenbelt, Md. Bruinsma, S., J. Forbes, R. S. Nerem, and X. Zhang (2006), Thermospheric density response to the 20–21 November CHAMP and GRACE accelerometer data, J. Geophys. Res. , 111, A06303, doi :10.1029/ 2005JA011284. Buonsanto, M. J. (1986), Possible effects of the changing Earth–Sun distance on the upper atmosphere, S. Pac. J. Nat. Sci., 8, 58–65. Buonsanto, M. J., and O. G. Witasse (1999), An updated climatology of thermospheric neutral winds and F region ion drifts above Millstone Hill, J. Geophys. Res., 104, 24,675–24,687, doi:10.1029/1999JA900345. Buonsanto, M. J., J. E. Salah, K. L. Miller, W. L. Oliver, R. G. Burnside, and P. G. Richards (1989), Observation of neutral circulation at midlatitudes during the equinox transition study, J. Geophys. Res., 94, 16,987–16,997, doi:10.1029/JA094iA12p16987. Buonsanto, M. J., J. C. Foster, and D. P. Sipler (1992a), Observations from Millstone Hill during the geomagnetic disturbances of March and April 1990, J. Geophys. Res., 97, 1225–1243, doi:10.1029/91JA02428. Buonsanto, M. J., Y.‐K. Tung, and D. P. Sipler (1992b), Neutral atomic oxygen density from nighttime radar and optical wind measurements at Millstone Hill, J. Geophys. Res., 97, 8673–8679, doi:10.1029/ 92JA00435. Burnside, R. G., C. A. Tepley, and V. P. Wickwar (1987), The O+‐O collision cross‐section: Can it be inferred from aeronomical measurements?, Ann. Geophys., 5, 343–350. Burnside, R. G., M. P. Sulser, and J. C. G. Walker (1988), Determination of thermospheric temperatures and neutral densities at Arecibo from the ion energy balance, J. Geophys. Res., 93, 8642–8650, doi:10.1029/ JA093iA08p08642. Burnside, R. G., C. A. Tepley, M. P. Sulzer, T. J. Fuller‐Rowell, D. G. Torr, and R. G. Roble (1991), The neutral thermosphere at Arecibo during geomagnetic storms, J. Geophys. Res., 96, 1289–1301, doi:10.1029/ 90JA01595. Chen, C. F., B. W. Reinisch, J. L. Scali, X. Huang, R. R. Gamache, M. J. Buonsanto, and B. D. Ward (1994), The accuracy of ionogram‐derived N(h) profiles, Adv. Space Res., 14, 43–46, doi:10.1016/0273-1177(94) 90236-4. Davis, C. J., A. D. Farmer, and A. Aruliah (1995), An optimised method for calculating the O+‐O collision parameter from aeronomic measurements, Ann. Geophys., 13, 541–550, doi:10.1007/s00585-995-0541-x. Dudeney, J. R. (1983), The accuracy of simple methods for determining the height of the maximum electron concentration of the F2‐layer from scaled ionospheric characteristics, J. Atmos. Sol. Terr. Phys., 45, 629–640, doi:10.1016/S0021-9169(83)80080-4. Emmert, J. T., R. R. Meier, J. M. Picone, J. L. Lean, and A. B. Christensen (2006), Thermospheric density 2002–2004: TIMED/GUVI dayside limb observations and satellite drag, J. Geophys. Res., 111, A10S16, doi:10.1029/2005JA011495. Ennis, A. E., G. J. Bailey, and R. J. Moffett (1995), Vibrational nitrogen concentration in the ionosphere and its dependence on season and solar cycle, Ann. Geophys., 13, 1164–1171, doi:10.1007/s00585-995-1164-y. Ginzburg, E. I., V. T. Guljaev, and L. V. Jalkovskaya (1987), Dynamical Models of Free Atmosphere (in Russian), Nauka, Moscow. Goncharenko, L., et al. (2006), Large variations in the thermosphere and ionosphere during minor geomagnetic disturbances in April 2002 and their association with IMF By, J. Geophys. Res., 111, A03303, doi:10.1029/2004JA010683. Grossmann, K. U., M. Kaufmann, and E. Gerstner (2000), A global measurement of lower thermosphere atomic oxygen densities, Geophys. Res. Lett., 27, 1387–1390, doi:10.1029/2000GL003761. Hedin, A. E. (1987), MSIS‐86 thermospheric model, J. Geophys. Res., 92, 4649–4662, doi:10.1029/JA092iA05p04649. Hierl, P. M., I. Dotan, J. V. Seeley, J. M. Van Doran, R. A. Morris, and A. A. Viggiano (1997), Rate coefficients for the reactions of O+ with N2 and O2 as a function of temperature (300–1800 K), J. Chem. Phys., 106, 3540–3544, doi:10.1063/1.473450. Himmelblau, D. M. (1972), Applied Nonlinear Programming, McGraw‐ Hill, New York. Ivanov‐Kholodny, G. S., and A. V. Mikhailov (1980), The Prediction of Ionospheric Conditions (in Russian), Hydrometeoizdat, Saint Petersburg, Russia. (English translation, Reidel, Dordrecht, Netherlands, 1986). Judge, D. L., et al. (1998), First solar EUV irradiances obtained from SOHO by the CELIAS/SEM, Sol. Phys., 177, 161–173, doi:10.1023/ A:1004929011427. Kawamura, S., N. Balan, Y. Otsuka, and S. Fukao (2002), Annual and semiannual variations of the midlatitude ionosphere under low solar activity, J. Geophys. Res., 107(A8), 1166, doi:10.1029/2001JA000267. Krinberg, I. A., and A. V. Taschilin (1984), Ionosphere and Plasmasphere (in Russian), Nauka, Moscow. Lean, J. L., H. P. Warren, J. T. Mariska, and J. Bishop (2003), A new model of solar EUV irradiance variability: 2. Comparisons with empirical models and observations and implications for space weather, J. Geophys. Res., 108(A2), 1059, doi:10.1029/2001JA009238. Liu, H., and H. Lühr (2005), Strong disturbance of the upper thermospheric density due to magnetic storms: CHAMP observations, J. Geophys. Res., 110, A09S29, doi:10.1029/2004JA010908. Liu, J. Y., Y. I. Chen, and J. S. Lin (2003), Statistical investigation of the saturation effect in the ionospheric foF2 versus sunspot, solar radio noise, and solar EUV radiation, J. Geophys. Res., 108(A2), 1067, doi:10.1029/ 2001JA007543. Mikhailov, A. V. (1978), Whether calculated mid‐latitude noon F2‐region is adequate to real one, Geomagn. Aeron., 18, 1028–1032. Mikhailov, A. V., and J. C. Foster (1997), Daytime thermosphere above Millstone Hill during severe geomagnetic storms, J. Geophys. Res., 102, 17,275–17,282, doi:10.1029/97JA00879. Mikhailov, A. V., and J. Lilensten (2004), A revised method to extract thermospheric parameters from incoherent scatter observations, Ann. Geophys., 47(2/3), suppl., 985–1008. Mikhailov, A. V., and V. V. Mikhailov (1994), The hysteresis of critical frequencies of the F2 layer, Geomagn. Aeron., 33, 637–642. Mikhailov, A. V., and V. V. Mikhailov (1995), Solar cycle variations of annual mean noon foF2, Adv. Space Res., 15, 79–82, doi:10.1016/ S0273-1177(99)80026-X. Mikhailov, A. V., and V. V. Mikhailov (1999), Indices for monthly median foF2 and M(3000)F2 modeling and long‐term prediction: Ionospheric index MF2, Int. J. Geomagn. Aeron., 1, 141–151. Mikhailov, A. V., and K. Schlegel (1997), Self‐consistent modeling of the daytime electron density profile in the ionospheric F region, Ann. Geophys., 15, 314–326. Mikhailov, A. V., and K. Schlegel (1998), Physical mechanism of strong negative storm effects in the daytime ionospheric F2 region observed with EISCAT, Ann. Geophys., 16, 602–608, doi:10.1007/s00585-998- 0602-z. Mikhailov, A. V., and K. Schlegel (2000), A self‐consistent estimate of O++ N2 rate coefficient and total EUV solar flux with l < 1050 Å using EISCAT observations, Ann. Geophys., 18, 1164–1171. Millward, G. H., H. Rishbeth, T. J. Fuller‐Rowell, A. D. Aylward, S. Quegan, and R. J. Moffett (1996), Ionospheric F2 layer seasonal and semiannual variations, J. Geophys. Res., 101, 5149–5156, doi:10.1029/95JA03343. Nusinov, A. A. (1992), Models for prediction of EUV and X‐ray solar radiation based on 10.7‐cm radio emission, in Proceedings of the Workshop on Solar Electromagnetic Radiation for Solar Cycle 22, Boulder, Co., July 1992, edited by Donnely, R. F., pp. 354–359, Environ. Res. Lab., NOAA, Boulder, Colo. Oliver, W., and K. Glotfelty (1996), O+–O collision cross section and longterm F region O density variations deduced from the ionospheric energy budget, J. Geophys. Res., 101, 21,769–21,784, doi:10.1029/96JA01585. Park, C. G. (1970), Whistler observations of the interchange of ionization between the ionosphere and the protonosphere, J. Geophys. Res., 75, 4249–4260, doi:10.1029/JA075i022p04249. Pavlov, A. V. (1986), The rate coefficient of the reaction O+ with the vibrationally excited N2 in the ionosphere, Geomagn. Aeron., 26, 126–127. Pavlov, A. V., and N. M. Pavlova (2005), Causes of mid‐latitude NmF2 winter anomaly at solar maximum, J. Atmos. Sol. Terr. Phys., 67, 862–877, doi:10.1016/j.jastp.2005.02.009. Pavlov, A. V., M. J. Buonsanto, A. C. Schlesier, and P. G. Richards (1999), Comparison of models and data at Millstone Hill during the 5–11 June 1991 storm, J. Atmos. Sol. Terr. Phys., 61, 263–279, doi:10.1016/ S1364-6826(98)00135-7. Pesnell, W. D., K. Omidvar, and W. R. Hoegy (1993), Momentum transfer collision frequency of O+‐O, Geophys. Res. Lett., 20, 1343–1346, doi:10.1029/93GL01597. Picone, J. M., A. E. Hedin, D. P. Drob, and A. C. Aikin (2002), NRLMSISE‐00 empirical model of the atmosphere: Statistical comparison and scientific issues, J. Geophys. Res., 107(A12), 1468, doi:10.1029/ 2002JA009430. Reddy, C. A., W. R. Hoegy, W. D. Pesnell, H. G. Mayr, and C. O. Hines (1994), Accuracy of O+‐O collision cross‐section deduced from ionosphere‐ thermosphere observations, Geophys. Res. Lett., 21, 2429–2432, doi:10.1029/94GL02494. Richards, P. G. (2001), Seasonal and solar cycle variations of the ionospheric peak electron density: Comparison of measurement and models, J. Geophys. Res., 106, 12,803–12,819, doi:10.1029/2000JA000365. Richards, P. G., and D. G. Torr (1988), Ratios of photoelectron to EUV ionization rates for aeronomic studies, J. Geophys. Res., 93, 4060–4066, doi:10.1029/JA093iA05p04060. Richards, P. G., D. G. Torr, M. J. Buonsanto, and K. L. Miller (1989), The behavior of the electron density and temperature at Millstone Hill during the equinox transition study September 1984, J. Geophys. Res., 94, 16,969–16,975, doi:10.1029/JA094iA12p16969. Richards, P. G., J. A. Fennelly, and D. G. Torr (1994a), EUVAC: A solar EUV flux model for aeronomic calculations, J. Geophys. Res., 99, 8981–8992, doi:10.1029/94JA00518. Richards, P. G., D. G. Torr, M. J. Buonsanto, and D. P. Sipler (1994b), Ionospheric effects of the March 1990 magnetic storm: Comparison of theory and measurements, J. Geophys. Res., 99, 23,359–23,365, doi:10.1029/94JA02343. Richards, P. G., D. G. Torr, B. W. Reinisch, R. R. Gamache, and P. J. Wilkinson (1994c), F2 peak electron density at Millstone Hill and Hobart: Comparison of theory and measurements at solar maximum, J. Geophys. Res., 99, 15,005–15,016, doi:10.1029/94JA00863. Richards, P. G., P. L. Dyson, T. P. Davies, M. L. Parkinson, and A. J. Reeves (1998), Behavior of the ionosphere and thermosphere at a southern midlatitude station during magnetic storms in early March 1995, J. Geophys. Res., 103, 26,421–26,432, doi:10.1029/97JA03342. Rios, V. H., C. F. Medina, and P. Alvarez (2007), Comparison between IRI predictions and Digisonde measurements at Tucuman, J. Atmos. Sol. Terr. Phys., 69, 569–577, doi:10.1016/j.jastp.2006.10.004. Rishbeth, H. (1998), How the thermospheric circulation affects the ionospheric F2‐layer, J. Atmos. Sol. Terr. Phys., 60, 1385–1402, doi:10.1016/S1364-6826(98)00062-5. Rishbeth, H., and D. W. Barron (1960), Equilibrium electron distributions in the ionospheric F2‐layer, J. Atmos. Terr. Phys., 18, 234–252, doi:10.1016/0021-9169(60)90095-7. Rishbeth, H., and O. K. Garriott (1969), Introduction to Ionospheric Physics, Academic, New York. Rishbeth, H., and I. C. F. Müller‐Wodarg (2006), Why is there more ionosphere in January than in July?: The annual asymmetry in the F2‐layer, Ann. Geophys., 24, 3293–3311, doi:10.5194/angeo-24-3293-2006. Rishbeth, H., and C. S. G. K. Setty (1961), The F‐layer at sunrise, J. Atmos. Sol. Terr. Phys., 20, 263–276, doi:10.1016/0021-9169(61)90205-7. Rishbeth, H., I. C. F. Müller‐Wodarg, L. Zou, T. J. Fuller‐Rowell, G. H. Millward, R. J. Moffett, D. W. Idenden, and A. D. Aylward (2000), Annual and semiannual variations in the ionospheric F2‐layer: II. Physical discussion, Ann. Geophys., 18, 945–956, doi:10.1007/s00585- 000-0945-6. Seaton, S. L., and L. V. Berkner (1939), Non‐seasonal behavior of the F region, Terr. Magn. Atmos. Electr., 44, 313–319, doi:10.1029/ TE044i003p00313. Sethi, N. K., M. K. Goel, and K. K. Mahajan (2002), Solar cycle variations of foF2 from IGY to 1990, Ann. Geophys., 20, 1677–1685, doi:10.5194/ angeo-20-1677-2002. Sutton, E. K., J. M. Forber, and R. S. Nerem (2005), Global thermospheric neutral density and wind response to the severe 2003 geomagnetic storms from CHAMP accelerometer data, J. Geophys. Res., 110, A09S40, doi:10.1029/2004JA010985. Swider, W., Jr. (1969), Ionization rates due to the attenuation of 1–100 Å nonflare solar X rays in the terrestrial atmosphere, Rev. Geophys., 7, 573–595, doi:10.1029/RG007i003p00573. Torr, M. R., D. G. Torr, R. A. Ong, and H. E. Hinteregger (1979), Ionization frequencies for major thermospheric constituents as a function of solar cycle 21, Geophys. Res. Lett., 6, 771–774, doi:10.1029/ GL006i010p00771. Ulich, T. (2000), Solar variability and long‐term trends in the ionosphere, Publ. 87, Sodankyla Geophys. Obs., Oulu, Finland. Vlasov, M. N., M. C. Kelly, and D. L. Hysell (2007), Eddy turbulence parameters inferred from radar observations at Jicamarca, Ann. Geophys., 25, 475–481, doi:10.5194/angeo-25-475-2007. Woods, T. N., F. G. Eparvier, S. M. Bailey, P. C. Chamberlin, J. Lean, G. J. Rottman, S. C. Solomon, W. K. Tobiska, and D. L. Woodraska (2005), Solar EUV experiment (SEE): Mission overview and first results, J. Geophys. Res., 110, A01312, doi:10.1029/2004JA010765. Yonezawa, T., and Y. Arima (1959), On the seasonal and non‐seasonal annual variations and the semi‐annual variation in noon and midnight electron densities of the F2 layer in middle latitudes, J. Radio Res. Lab. Jpn., 6, 293–309. Yu, T., W. Wan, L. Liu, and B. Zhao (2004), Global scale annual and semi‐annual variations of daytime NmF2 in the high solar activity years, J. Atmos. Sol. Terr. Phys., 66, 1691–1701, doi:10.1016/j.jastp.2003.09. 018. Zhang, S.‐R., W. L. Oliver, S. Fukao, and S. Kawamura (2001), Extraction of solar and thermospheric information from the ionosphericelectron density profile, J. Geophys. Res., 106, 12,821–12,836, doi:10.1029/ 2000JA000403. Zhang, S.‐R., W. L. Oliver, J. M. Holt, and S. Fukao (2002), Solar EUV, exospheric temperature and thermospheric wind inferred from incoherent scatter measurements of the electron density profile at Millstone Hill and Shigaraki, Geophys. Res. Lett., 29(9), 1358, doi:10.1029/ 2001GL013579. Zhao, B., W. Wan, L. Liu, T. Mao, Z. Ren, M. Wang, and A. B. Christensen (2007), Features of annual and semiannual variations derived from the global ionospheric maps of total electron content, Ann. Geophys., 25, 2513–2527, doi:10.5194/angeo-25-2513-2007.en
dc.description.obiettivoSpecifico3.9. Fisica della magnetosfera, ionosfera e meteorologia spazialeen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.contributor.authorMikhailov, A. V.en
dc.contributor.authorPerrone, L.en
dc.contributor.departmentInstitute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Troitsk, Russiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptPushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN), Troitsk, Moscow Region 142190, Russia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.orcid0000-0003-4335-0345-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent01. Atmosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2010JA016122.pdf848.24 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

23
checked on Feb 10, 2021

Page view(s) 10

343
checked on Mar 27, 2024

Download(s)

31
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric