Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7060
DC FieldValueLanguage
dc.contributor.authorallRouwet, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallTassi, F.; Università degli Studi di Firenze, Dipartimento di Scienze della Terra, Firenze, Italyen
dc.date.accessioned2011-07-08T09:47:46Zen
dc.date.available2011-07-08T09:47:46Zen
dc.date.issued2011en
dc.identifier.urihttp://hdl.handle.net/2122/7060en
dc.description.abstractIn the past, variations in the chemical contents (SO4 2−, Cl−, cations) of crater lake water have not systematically demonstrated any relationships with eruptive activity. Intensive parameters (i.e., concentrations, temperature, pH, salinity) should be converted into extensive parameters (i.e., fluxes, changes with time of mass and solutes), taking into account all the internal and external chemical–physical factors that affect the crater lake system. This study presents a generalized box model approach that can be useful for geochemical monitoring of active crater lakes, as highly dynamic natural systems. The mass budget of a lake is based on observations of physical variations over a certain period of time: lake volume (level, surface area), lake water temperature, meteorological precipitation, air humidity, wind velocity, input of spring water, and overflow of the lake. This first approach leads to quantification of the input and output fluxes that contribute to the actual crater lake volume. Estimating the input flux of the "volcanic" fluid (Qf - kg/s) –– an unmeasurable subsurface parameter –– and tracing its variations with time is the major focus during crater lake monitoring. Through expanding the mass budget into an isotope and chemical budget of the lake, the box model helps to qualitatively characterize the fluids involved. The (calculated) Cl− content and dD ratio of the rising "volcanic" fluid defines its origin. With reference to continuous monitoring of crater lakes, the present study provides tips that allow better calculation of Qf in the future. At present, this study offers the most comprehensive and up-to-date literature review on active crater lakes.en
dc.language.isoEnglishen
dc.publisher.nameINGVen
dc.relation.ispartofAnnals of Geophysicsen
dc.relation.ispartofseries2/54(2011)en
dc.subjectGeochemical monitoringen
dc.subjectActive crater lakes,en
dc.subjectBox modelen
dc.subjectMass budgeten
dc.subjectIsotope and chemical budgeten
dc.titleGeochemical monitoring of volcanic lakes. A generalized box model for active crater lakesen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber161-173en
dc.identifier.URLhttp://www.annalsofgeophysics.eu/index.php/annalsen
dc.subject.INGV03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamicsen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistryen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniquesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risken
dc.identifier.doi10.4401/ag-5035en
dc.relation.referencesAdams, E., D.J. Cosler and K.R. Helfrich (1990). Evaporation from heated water bodies: predicting combined forced plus free convection, Water Resour. Res., 26, 425-435. Bani, P., C. Oppenheimer, J.C. Varekamp, T. Quinou, M. Lardy and S. Carn (2009). Remarkable geochemical changes and degassing at Voui crater lake, Ambae volcano, Vanuatu, J. Volcanol. Geotherm. Res., 188, 347-357. Bernard, A. and A. Mazot (2004). Geochemical evolution of the young crater lake of Kelud volcano in Indonesia, Water-Rock Interaction (WRI-11), Wanty & Seal II eds., A.A. Balkema Publishers, 87-90. Bernard, A., B. Barbier, C. Caudron, D. Syahbana, A. Solikhin, S. Kunrat and V Hallet (2010). The monitoring of volcanic lakes in Indonesia, 7th Workshop of the Commission of Volcanic Lakes, Costa Rica. Brown, G., H. Rymer, J. Dowden, P. Kapadia, D. Stevenson, J. Barquero and L.D. Morales (1989). Energy budget analysis for Poás crater lake: implications for predicting volcanic activity, Lett. Nature, 339, 370-373. Cappa, C.D., M.B. Hendricks, D.J. DePaolo and R.C. Cohen (2003). Isotopic fractionation of water during evaporation, J. Geophys. Res., 108, 4525-4534. Carapezza, M.L., M. Lelli and L. Tarchini (2008). Geochemistry of the Albani and Nemi crater lake in the volcanic district of Alban Hills, J. Volcanol. Geotherm. Res., 178, 297-304. Caudron, C. and A. Bernard (2010). Hydroacoustic quantifications of CO2 bubbles in volcanic lakes, 7th Workshop of the Commission of Volcanic Lakes, Costa Rica. Chiodini, G., A. Costa, D. Rouwet and F. Tassi (2010). Modeling CO2 air dispersion from gas driven lake eruptions, Abstract V23A-2384, AGU Fall Meeting. Christenson, B.W. and C.P. Wood (1993). Evolution of the vent-hosted hydrothermal system beneath Ruapehu Crater Lake, New Zealand, Bull .Volcanol., 55, 547-565. Christenson, B.W. (1994). Convection and stratification in Ruapehu crater lake, New Zealand: implications for Lake Nyos-type gas release eruptions, Geochem. J., 28, 185-197. Christenson, B.W. (2000). Geochemistry of fluids associated with the 1995-1996 eruption of Mt. Ruapehu, New Zealand: signatures and processes in the magmatichydrothermal system, J. Volcanol. Geotherm. Res., 97, 1-30. Christenson, B.W., C.A. Werner, A.G. Reyes, S. Sherburn, B.J. Scott, C. Miller, M.J. Rosenburg, A.W. Hurst, and K. Britten (2007). Hazards from hydrothermally sealed volcanic conduits, EOS, 88 (50), 53-55. Christenson, B.W., A.G. Reyes, R. Young, A. Moebis, S. Sherburn, J. Cole-Baker and K. Britten (2010a). Cyclic processes and factors leading to phreatic eruption events: insightsfrom the 25 September 2007 eruption through Ruapehu Crater Lake, New Zealand, J. Volcanol. Geotherm. Res., 191, 15-32. Christenson, B.W., A. Mazot, and K. Britten (2010b). Gas transfer through Ruapehu Crater Lake: Insights gained from a recent water-borne survey, Abstract V23A-2388, AGU Fall Meeting. Craig, H. (1963). The isotopic geochemistry of water and carbon in geothermal areas, In: Nuclear Geology in Geothermal Areas, Conference Proc. (Spoleto, Italy), edited by E. Tongiorgio, 17-53. Delmelle, P., M. Kusakabe, A. Bernard, T. Fischer, S. de Brouwer and E. del Mundo (1998). Geochemical and isotopic evidence for seawater contamination of the hydrothermal system of Taal Volcano, Luzon, the Philippines, Bull. Volcanol., 59, 562-576. Delmelle, P. and A. Bernard (2000a). Volcanic lakes, In: Encyclopedia of volcanoes, Academic, New York, 877-895. Delmelle, P. and A. Bernard (2000b). Downstream composition changes of acidic volcanic waters discharged into the Banyupahit stream, Ijen caldera, Indonesia, J. Volcanol. Geotherm. Res., 97, 55-75. Evans, W.C., L.D. White, M.L. Tuttle, G.W. Kling, G. Tanyileke and R.L. Michel (1994). Six years of change at Lake Nyos, Cameroon, yield clues to the past and cautions for the future, Geochem. J., 28, 139-162. Fournier, N., H. Rymer, G. Williams-Jones, and J. Brenes (2004). High-resolution gravity survey: Investigation of subsurface structures at Poás volcano, Costa Rica, Geophys. Res. Lett., 31; doi: 10.1029/2004GL020563. Fournier, N., F. Witham, M. Moreau-Fournier, and L. Bardou (2009). Boiling Lake of Dominica, West Indies: Hightemperature volcanic crater lake dynamics, J. Geophys. Res., 114; doi: 10.1029/2008JB005773. Fournier, N., M. Moreau and R. Robertson (2010). Disappearance of a crater lake: implications for potential explosivity at Soufrière volcano, St Vincent, Lesser Antilles, Bull. Volcanol.; doi: 10.1007/s00445-010-0422-3. Giggenbach, W.F. (1974). The chemistry of Crater Lake, Mt Ruapehu (New Zealand) during and after the 1971 active period, New Zeal. J. Sci., 17, 33-45. Giggenbach, W.F. (1978). The isotopic composition of waters from the El Tatio geothermal field, Northern Chile, Geochim. Cosmochim. Acta, 42, 979-988. Giggenbach, W.F. and M.K. Stewart (1982). Processes controlling the isotopic composition of steam and water discharges from steam vents and steam-heated pools in geothermal areas, Geothermics, 11 (2), 71-80. Giggenbach, W.F. (1992). Isotopic shift in waters from geothermal and volcanic systems along convergent plate boundaries and their origin, Earth Planet. Sci. Lett., 113, 495-510. Heikens, A., S. Sumarti, M. van Bergen, B. Widianarko, L. Fokkert, K. van Leeuwen and W. Seinen (2005). The impact of hyperacid Ijen Crater Lake, risks of excess fluoride to human health, Sci. Tot. Environm., 346, 56-69. Horita, J., D.J. Wesolowski and D.R. Cole (1993a). The activitycomposition relationship of oxygen and hydrogen isotopes in aqueous salt solutions: I. Vapor-liquid water equilibration of single salt solutions from 50 to 100°C, Geochim. Cosmochim. Acta, 57, 2797-2817. Horita, J., D.R. Cole and D.J. Wesolowski (1993b). The activitycomposition relationship of oxygen and hydrogen isotopes in aqueous salt solutions: II. Vapor-liquid water equilibration mixed salt solutions from 50 to 100°C and geochemical implications, Geochim. Cosmochim. Acta, 57, 4703-4711. Horita, J. and D.J. Wesolowski (1994). Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature, Geochim. Cosmochim. Acta, 58 (16), 3425-3437. Hurst, A.W., H.M. Bibby, B.J. Scott and M.J. McGuinness (1991). The heat source of Ruapehu Crater Lake; deductions from the energy and mass balances, J. Volcanol. Geotherm. Res., 6, 1-21. Hurst, A.W. and P.J. McGinty (1999). Earthquake swarms to the west of Mt Ruapehu preceding its 1995 eruption, J. Volcanol. Geotherm. Res., 90, 19-28. Jutzeler, M., N. Varley and M. Roach (2011). Geophysical characterization of hydrothermal systems and intrusive bodies, El Chichón volcano (Mexico), J. Geophys. Res.; doi: 10.1029/2010JB007992. JVGR (1989). The Lake Nyos Event and Natural CO2 Degassing I, Special issue edited by F. Le Guern and G.E. Sigvaldason, J. Volcanol. Geotherm. Res., 39 (2-3), 182 pp. Kempter, K.A. and G.L. Rowe (2000). Leakage of Active Crater lake brine through the north flank at Rincón de la Vieja volcano, northwest Costa Rica, and implications for crater collapse, J. Volcanol. Geotherm. Res., 97, 143-159. Kerle, N. and B. van Wijck de Vries (2001). The 1998 debris avalanche at Casita volcano, Nicaragua-Investigation of structural deformation as the cause of slope instability using remote sensing, J. Volcanol. Geotherm. Res., 105, 49-63. Kling, G.W., M.A. Clark, H.R Compton, J.D. Devine, W.C. Evans, A.M. Humphrey, E.J. Koenigsberg, J.P. Lockwood, M.L. Tuttle and G.N. Wagner (1987). The 1986 Lake Nyos gas disaster in Cameroon, West Africa, Science, 236, 169-175. Kusakabe, M., G.Z. Tanyileke, S.A. McCord and S.G. Schladow (2000a). Recent pH and CO2 profiles at Lakes Nyos and Monoun, Cameroon: implications for the degassing strategy and its numerical simulation, J. Volcanol. Geotherm. Res., 97, 241-260. Kusakabe, M., Komoda, Y., Takano, B. and T. Abiko (2000b). Sulfur isotopic effects in the disproportionation reactionof sulfur dioxide in hydrothermal fluids: implications for the d34S variations of dissolved bisulfate and elemental sulfur from active crater lakes, J. Volcanol. Geotherm. Res., 97, 287-307. Löhr, A.J., T.A. Bogaard, A. Heikens, M.R. Hendriks, S. Sumarti, M.J. van Bergen, C.A.M. Van Gestel, N.M. Van Straalen, P.Z. Vroon and B. Widianarko (2005). Natural pollution caused by the extremely acidic crater lake Kawah Ijen, East Java, Indonesia, Environ. Sci. & Pollut. Res., 12 (2), 89-95. López, D.L. and S.N. Williams (1993). Catastrophic volcanic collapse: relation to hydrothermal processes, Science, 260, 1794-1796. Martínez, M., E. Fernández, J. Valdés, V. Barboza, R. Van der Laat, E. Duarte, E. Malavassi, L. Sandoval, J. Barquero and T. Marino (2000). Chemical evolution and activity of the active crater lake of Poás volcano, Costa Rica, 1993- 1997, J. Volcanol. Geotherm. Res., 97, 127-141. Mastin, L.G. and J.B. Witter (2000). The hazards of eruptions through lakes and seawater, J. Volcanol. Geotherm. Res., 97, 195-214. Mazot, A. and Y. Taran (2009). CO2 flux from the volcanic lake of El Chichón (Mexico). Geofís. Int., 48 (1), 73-83. Mazot, A., D. Rouwet, Y. Taran, S. Inguaggiato and N. Varley (2011). CO2 and He degassing at El Chichón volcano, Chiapas, Mexico: gas flux, origin and relationship with local and regional tectonics, In: S. Inguaggiato, H. Shinohara and T. Fischer (eds), Geochemistry of volcanic fluids: a special issue in honor of Yuri A. Taran, Bull. Volcanol., 73 (4), 423-442. Miyabuchi, Y. and A. Terada (2009). Subaqueous geothermal activity revealed by lacustrine sediments of the acidic Nakadake crater lake, Aso Volcano, Japan, J. Volcanol. Geotherm. Res., 187, 140-145. Morrissey, M., G. Gisler, R. Weaver and M. Gittings (2010). Numerical model of crater lake eruptions, Bull. Volcanol.; doi: 10.1007/s00445-010-0392-5. Ohba, T., J. Hirabayashi and K. Nogami (1994). Water, heat and chloride budgets of the crater lake, Yugama at Kusatsu-Shirane volcano, Japan., Geochem. J., 28, 217-231. Ohba, T., J. Hirabayashi and K. Nogami (2000). D/H and 18O/16O ratios of water in the crater lake at Kusatsu- Shirane volcano, Japan, J. Volcanol. Geotherm. Res., 97, 329-346. Ohba, T., J. Hirabayashi and K. Nogami (2008). Temporal changes in the chemistry of lake water within Yugama Crater, Kusatsu-Shirane Volcano, Japan: Implications for the evolution of the magmatic hydrothermal system, J. Volcanol. Geotherm. Res., 178, 131-144. Ohsawa, S., T. Saito, S. Yoshikawa, H. Mawatari, M. Yamada, K. Amita, N. Takamatsu, Y. Sudo and T. Kagiyama (2010). Color change of lake water at the active crater lake of Aso volcano, Yudamari, Japan: is it in response to change in water quality induced by volcanic activity?, Limnology, 11, 207-215. Oppenheimer, C. and D. Stevenson (1989). Liquid sulphur lakes at Poás volcano, Nature, 342, 790-793. Oppenheimer, C. (1997). Ramifications of the skin effect for crater lake heat budget analysis, J. Volcanol. Geotherm. Res., 75, 159-165. Pasternack, G.B. and J.C. Varekamp (1994). The geochemistry of the Keli Mutu crater lakes, Flores, Indonesia, Geochem. J., 28, 243-262. Pasternack, G.B. and J.C. Varekamp (1997). Volcanic lake systematic I. Physical constraints, Bull. Volcanol., 58, 528-538. Procter, J.N., S.J. Cronin, I.C. Fuller, M. Sheridan, V.E. Neall and H. Keys (2010). Lahar hazard assessment using Titan2D for an alluvial fan with rapidly changing geomorphology: Whangaehu River, Mt. Ruapehu, Geomorphology, 116, 162-174. Reid, M.E. (2004). Massive collapse of volcanic edifices triggered by hydrothermal pressurization, Geology, 32, 373-376. Rouwet, D., Y. Taran and N.R. Varley (2004). Dynamics and mass balance of El Chichón crater lake, Mexico, Geofís. Int., 43, 427-434. Rouwet, D., Y. Taran, S. Inguaggiato, N. Varley and J.A. Santiago Santiago (2008). Hydrochemical dynamics of the "lake-spring" system in the crater of El Chichón volcano (Chiapas, Mexico), J. Volcanol. Geotherm. Res., 178, 237-248. Rouwet, D., R.A. Mora-Amador and C.J. Ramírez-Umaña (2010). A combined Cl and isotope balance approach for Laguna Caliente, Poás: precursory signals for single phreatic eruptions during the ongoing eruptive cycle?, 7th Workshop of the Commission of Volcanic Lakes, Costa Rica. Rouwet, D. (2011). A photographic method for detailing the morphology of the floor of a dynamic crater lake: the El Chichón case (Chiapas, Mexico). Limnology; doi: 10.1007/s10201-011-0343-7. Rowe, G.L., S. Ohsawa, B. Takano, S.L. Brantley, J.F. Fernández and J. Barquero (1992a). Using Crater Lake chemistry to predict volcanic activity at Poás Volcano, Costa Rica, Bull. Volcanol. 54, 494-503. Rowe, G.L., S.L. Brantley, M. Fernández, J.F. Fernández, A. Borgia and J. Barquero (1992b). Fluid-volcano interaction in an active stratovolcano: the Crater Lake system of Poás Volcano, Costa Rica, J. Volcanol. Geotherm. Res. 64, 233-267. Rowe, G.L. and S.L. Brantley (1993). Estimation of the dissolution rates of andesitic glass, plagioclase and pyroxene in a flank aquifer of Poás Volcano, Costa Rica, Chem. Geol., 105, 71-87. Rowe, G.L. (1994). Oxygen, hydrogen, and sulphur isotope systematics of the crater lake system of Poás Volcano, Costa Rica, Geochem. J., 28, 263-287.Rowe, G.L., S.L. Brantley, J.F. Fernández and A. Borgia (1995). The chemical and hydrologic structure of Poás Volcano, Costa Rica, J. Volcanol. Geotherm. Res. 64, 233-267. Rymer, H., C.A. Locke, A. Borgia, M. Martínez, J. Brenes, R. Van der Laat and G. Williams-Jones (2009). Long-term fluctuations in volcanic activity: implications for future environmental impact, Terra Nova; doi: 10.111/j.1365- 3121.2009.00555.x. Sanford, W.E., L.F. Konikow, G.L. Rowe Jr and S.L. Brantley (1995). Groundwater transport of crater-lake brine at Poás Volcano, Costa Rica, J. Volcanol. Geotherm. Res, 64, 269-293. Schaefer, J.R., W.E. Scott, W.C. Evans, J. Jorgenson, R.G. McGimsey and B. Wang (2008). The 2005 catastrophic acid crater lake drainage, lahar, and acidic aerosol formation at Mount Chiginagak volcano, Alaska, USA: field observations and preliminary water and vegetation chemistry results, Geochem. Geophys. Geosyst., 9 (7); doi: 10.1029/2007GC001900. Sheridan, M.F. and K.H. Wohletz (1983). Hydrovolcanism: basic considerations and review, J. Volcanol. Geotherm. Res., 17, 1-29. Shinohara, H., S. Yoshikawa and Y. Miyabuchi (2010). Degassing of Aso Volcano, Japan through an acid crater lake: differentiation of volcanic gas-hydrothermal fluids deduced from volcanic plume chemistry, Abstract V23A- 2387, AGU Fall Meeting. Simkin, T., L. Siebert, L. McClelland, D. Bridge, C. Newhall and J.H. Latter (1981). Volcanoes of the World, Hutchinson Ross, Pa. Usa, 233 pp. Sriwana, T., M.J. Van Bergen, S. Sumarti, J.C.M. de Hoog, B.J.H. van Os, R. Wahyuningsih and M.A.C. Dam (1998). Volcanogenic pollution by acid water discharges along Ciwidey River, West Java (Indonesia). J. Geochem. Explor., 62, 161-182. Stimac, J.A., F. Goff, D. Counce, A.C.L. Larocque and D.R. Hilton (2004). The crater lake and hydrothermal system of Mount Pinatubo, Philippines: evolution in the decade after eruption, Bull. Volcanol., 66, 149-167. Takano, B. (1987). Correlation of volcanic activity with sulfur oxy-anion speciation in a crater lake, Science, 235, 1633- 1635. Takano, B. and K. Watanuki (1990). Monitoring of volcanic eruptions at Yugama crater lake by aqueous sulphur oxyanions, J. Volcanol. Geotherm. Res., 40, 71-87. Takano, B., H. Saitoh and E. Takano (1994). Geochemical implications of subaqueous molten sulfur at Yugama crater lake, Kusatsu-Shirane volcano, Japan, Geochem. J. 28, 199-216. Takano, B., K. Suzuki, K. Sugimori, T. Ohba, S.M. Fazlullin, A. Bernard, S. Sumarti, R. Sukhyar and M. Hirabayashi (2004). Bathymetric and geochemical investigation of Kawah Ijen Crater Lake, East Java, Indonesia, J. Volcanol. Geotherm. Res., 135, 299-329. Taran, Y.A., B.G. Pokrovsky and Y.M. Dubik (1989). Isotopic composition and origin of water from andesitic magmas, Dokl. (Trans.) Ac. Sci. USSR, 304, 440-443. Taran, Y., T.P. Fischer, B. Pokrovsky, Y. Sano, M.A. Armienta and J.L. Macías (1998). Geochemistry of the volcanohydrothermal system of El Chichón Volcano, Chiapas, Mexico, Bull. Volcanol., 59, 436-449. Taran, Y. and D. Rouwet (2008). Estimating thermal inflow to El Chichón crater lake using the energy-budget, chemical and isotope balance approaches, J. Volcanol. Geotherm. Res., 175, 472-481. Taran, Y., D. Rouwet, S. Inguaggiato and A. Aiuppa (2008). Major and trace element geochemistry of neutral and acidic thermal springs at El Chichón volcano, Mexico. Implications for monitoring of the volcanic activity, J. Volcanol. Geotherm. Res., 178, 224-236. Tassi, F., O. Vaselli, B. Capaccioni, C. Giolito, E. Duarte, E. Fernández, A. Minissale and G. Magro (2005). The hydrothermal-volcanic system of Rincón de la Vieja volcano (Costa Rica): A combined (inorganic and organic) geochemical approach to understanding the origin of the fluid discharges and its possible application to volcanic surveillance, J. Volcanol. Geotherm. Res., 148, 315-333. Tassi, F., O. Vaselli, E. Fernández, E. Duarte, M. Martínez, A. Delgado Huertas and F. Bergamaschi (2009). Morphological and geochemical features of crater lakes in Costa Rica: an overview. J. Limnol., 68 (2). 193-205. Terada, A., T. Hashimoto and T. Kagiyama (2010). Volcanic lake system at Aso Volcano, Japan: fluctuations in the supply of volcanic fluid from the hydrothermal system beneath the crater lake, Abstract V23A-2386, AGU Fall Meeting. Tuttle, M.L., M.A. Clark, H.R. Compton, J.D. Devine, W.C. Evans, A.M. Humphrey, G. Kling, E.J. Koenigsberg, J.P. Lockwood and G.N. Wagner (1987). The 21 August 1986 Lake Nyos gas disaster, Cameroon, Final Report Dep. Int. USGS. van Rotterdam-Los, A.M.D., S.P. Vriend, M.J. van Bergen and P.F.M. van Gaans (2008). The effect of naturally acidified irrigation water on agricultural volcanic soils. The case of Asembagis, Java, Indonesia, J. Geochem. Explor., 96, 53-68. Varekamp, J.C. and R. Kreulen (2000). The stable isotope geochemistry of volcanic lakes, with examples from Indonesia, J. Volcanol. Geotherm. Res., 97, 309-327. Varekamp, J.C., G.B. Pasternack and G.L. Rowe Jr (2000). Volcanic lake systematics II. Chemical constraints, J. Volcanol. Geotherm. Res., 97, 161-179. Varekamp, J.C., A.P. Ouimette, S.W. Herman, A. Bermúdez and D. Delpino (2001). Hydrothermal element fluxes from Copahue, Argentina; a "bee-hive" volcano in turmoil, Geology, 29, 1059-1062.Varekamp, J.C. (2003). Lake contamination models for evolution towards steady state, J. Limnol., 62 (1). 67-72. Varekamp, J.C. (2008). The volcanic acidification of glacial Lake Caviahue, Province of Neuquen, Argentina, J. Volcanol. Geotherm. Res., 178, 184-196. Varekamp, J.C., A.P. Ouimette, S.W. Herman, K. S. Flynn, A. Bermúdez and D. Delpino (2009). Naturally acid waters from Copahue volcano, Argentina, Appl. Geochem., 24, 208-220. Voight, B., R.J. Janda, H. Glicken and P.M. Douglass (1983). Nature and mechanics of the Mount St. Helens rockslideavalanche of 18 May 1980, Geotechnique, 33, 243-273. Zlotnicki, J., Y. Sasai, J.P. Toutain, E.U. Villacorte, A. Bernard, J.P. Sabit, J.M. Gordon Jr., E.G. Corpuz, M. Harada, J.T. Puningbayan, H. Hase and T. Nagao (2008). Combined electromagnetic, geochemical and thermal surveys of Taal Volcano (Philippines) during the period 2005-2006, Bull. Volcanol.; doi: 10.1007/s00445-008-0205-2.en
dc.description.obiettivoSpecifico1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attiveen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorRouwet, D.en
dc.contributor.authorTassi, F.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentUniversità degli Studi di Firenze, Dipartimento di Scienze della Terra, Firenze, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.orcid0000-0003-3366-3882-
crisitem.author.orcid0000-0002-3319-4257-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Rouwet Annals Geoph_2011.pdfMain article684.93 kBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 20

19
checked on Feb 10, 2021

Page view(s) 5

534
checked on Apr 24, 2024

Download(s) 50

250
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric