Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7039
DC FieldValueLanguage
dc.contributor.authorallChiodini, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallCaliro, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallCardellini, C.; Dipartimento di Scienze della Terra, Università di Perugia, Piazza dell'Università, 06123 Perugia, Italyen
dc.contributor.authorallFrondini, F.; Dipartimento di Scienze della Terra, Università di Perugia, Piazza dell'Università, 06123 Perugia, Italyen
dc.contributor.authorallInguaggiato, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallMatteucci, F.; Dipartimento di Scienze della Terra, Università di Perugia, Piazza dell'Università, 06123 Perugia, Italyen
dc.date.accessioned2011-06-28T05:28:36Zen
dc.date.available2011-06-28T05:28:36Zen
dc.date.issued2011en
dc.identifier.urihttp://hdl.handle.net/2122/7039en
dc.description.abstractWe describe the results of a detailed hydrogeochemical campaign on the groundwater circulating in two regional aquifers located in the area of the Abruzzo 2009 earthquakes. The influx of deeply derived CO2 rich gases into the two aquifers is highlighted by the 13C isotopic composition of dissolved carbon species. The source of the gas is roughly localised beneath the epicentral area of the earthquakes where the presence of sources of fluids under high pressure is suggested by seismological investigations. The carbon isotopic-mass balance of the aquifers indicates that the amount of the deep CO2 dissolved and transported by the groundwaters is ~530 t/day. The chemical and isotopic composition of the gas entering the aquifers, named Abruzzo gas, has been derived by comparing the data measured in the springs with the results of a gas–water– rock reaction model, that simulates the evolution of the chemical and isotopic composition of groundwater affected by the input of a deeply-derived CO2 rich gas phase. The composition of Abruzzo gas is compared to that of 40 large gas emissions located in central Italy. The gas becomes progressively richer in radiogenic elements (4He and 40Ar) and in N2, from the volcanic complexes in the west to the Apennines in the east. The Abruzzo gas, in agreement with its location, well matches the composition of the gases emitted in the pre- Apennine region. These geochemical features, consistent with the structural setting of the region, indicate increasing residence times of the gas in the crust moving from west to east. In particular we suggest that the strong increase in radiogenic crustal gases reflects the occurrence of deep traps where the gas is stored at high pressures for a long time and that such high pressure gas pockets play a major role in the generation of Apennine earthquakes.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofEarth and Planetary Science Lettersen
dc.relation.ispartofseries/304 (2011)en
dc.subjectcarbon dioxideen
dc.subjectAbruzzo earthquakesen
dc.subjectcarbon isotopesen
dc.subjecthelium isotopesen
dc.titleGeochemical evidence for and characterization of CO2 rich gas sources in the epicentral area of the Abruzzo 2009 earthquakesen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber389–398en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistryen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamicsen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoringen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniquesen
dc.identifier.doi10.1016/j.epsl.2011.02.016en
dc.relation.referencesAgosta, F., Kirschner, D.L., 2003. Fluid conduits in carbonate-hosted seismogenic normal faults of central Italy. J. Geophys. Res. 108, 8. Agosta, F., Mulch, A., Chamberlain, P., Aydin, A., 2008. Geochemical traces of CO2-rich fluid flow along normal faults in central Italy. Geophys. J. Int. 174, 758–770. Amodio, S., Ferreri, V., D'Argenio, B., Weissert, H., Sprovieri, M., 2008. Carbon-isotope stratigraphy and cyclostratigraphy of shallow-marine carbonates; the case of San Lorenzello, Lower Cretaceous of southern Italy. Cretaceous Res. 29, 803–813. Andrews, J.N., 1985. The isotopic composition of radiogenic helium and its use to study groundwater movement in confined aquifers. Chem. Geol. 49, 339–351. Barbieri, M., Boschetti, T., Petitta, M., Tallini, M., 2005. Stable isotope 2H, 18O and 87Sr/ 86Sr and hydrochemistry monitoring for ground water hydrodynamics analysis in a karst aquifer (Gran Sasso, central Italy). Appl. Geochem. 20, 2063–2081. Barnes, I., Irwin, W.P., White, D.E., 1978. Global distribution of carbon dioxide discharges, and major zones of seismicity. U.S. Geol. Surv. Open-File Rep., Water- Resour. Invest. 78–39, p. 12. Boni, C., Bono, P., Capelli, G., 1986. Schema idrogeologico dell'Italia Centrale. Mem. Soc. Geol. Ital. 35, 991–1012. Cappa, F., Rutqvist, J., Yamamoto, K., 2009. Modeling crustal deformation and rupture processes related to upwelling of deep CO2-rich fluids during the 1965–1967 Matsushiro earthquake swarm in Japan. J. Geophys. Res. 114. doi:10.1029/ 2009JB006398. Castello, B., Selvaggi, G., Chiarabba, C., Amato, A., 2006. CSI Catalogo della sismicità italiana 1981–2002, versione 1.1. INGV-CNT, Roma, http://csi.rm.ingv.it/. Chiarabba, C., Amato, A., Anselmi, M., Baccheschi, P., Bianchi, I., Cattaneo, M., Cecere, G., Chiaraluce, L., Ciaccio, M.G., De Gori, P., De Luca, G., Di Bona, M., Di Stefano, R., Faenza, L., Govoni, A., Improta, L., Lucente, F.P., Marchetti, A., Margheriti, L., Mele, F., Michelini, A., Monachesi, G., Moretti, M., Pastori, M., Agostinetti, N.P., Piccinini, D., Roselli, P., Seccia, D., Valoroso, L., 2009. The 2009 L'Aquila (central Italy) M(W)6.3 earthquake: main shock and aftershocks. Geophys. Res. Lett. 36, L18308. doi:10. 1029/2009GL039627. Chiaraluce, L., Ellsworth, W.L., Chiarabba, C., Cocco, M., 2003. Imaging the complexity of an active complex normal fault system: the 1997 Colfiorito (central Italy) case study. J. Geophys. Res. 108, 2294. doi:10.1029/2002JB002166. Chiodini, G., Frondini, F., Cardellini, C., Parello, F., Peruzzi, L., 2000. Rate of diffuse carbon dioxide Earth degassing estimated from carbon balance of regional aquifers: the case of central Apennine, Italy. J. Geophys. Res. 105, 8423–8434. Chiodini, G., Cardellini, C., Amato, A., Boschi, E., Caliro, S., Frondini, F., Ventura, G., 2004. Carbon dioxide Earth degassing and seismogenesis in central and southern Italy. Geophys. Res. Lett. 31, L07615. doi:10.1029/2004gl019480. Chiodini, G., Baldini, A., Barberi, F., Carapezza, M.L., Cardellini, C., Frondini, F., Granirei, D., Ranaldi, M., 2007. Carbon dioxide degassing at Latera caldera (Italy): evidence of geothermal reservoir and evaluation of its potential energy. J. Geophys. Res. 112, B12204. doi:10.1029/2006JB004896. Collettini, C., Barchi, M.R., 2002. A low-angle normal fault in the Umbria region (central Italy); a mechanical model for the related microseismicity. Tectonophysics 359, 97–115. Collettini, C., Cardellini, C., Chiodini, G., De Paola, N., Holdsworth, R.E., Smith, S.A.F., 2008. Fault weakening due to CO2 degassing in the Northern Apennines: short- and long-term processes. In: Wiberley, C.A.J., Kurz, W., Imber, J., Holddsworth, R.E., Collettini, C. (Eds.), The Internal Structure of Fault Zones: Implications for Mechanical and Fluid-Flow Properties. Geological Society, London, pp. 175–194. Conticelli, S., Guarnieri, L., Farinelli, A., Mattei, M., Avanzinelli, R., Bianchini, G., Boari, E., Tommasini, S., Tiepolo,M., Prelevic,D., Venturelli, G., 2009. Trace elements and Sr–Nd–Pb isotopes of K-rich, shoshonitic, and calc-alkaline magmatism of the Western Mediterranean Region: genesis of ultrapotassic to calc-alkaline magmatic associations in a post-collisional geodynamic setting. Lithos 107, 68–92. Cox, S.F., 1995. Faulting processes at high fluid pressures: an example of fault valve behavior from the Wattle Gully Fault, Victoria, Australia. J. Geophys. Res. 100, 12841–12859. Di Luccio, F., Ventura, G., Di Giovambattista, R., Piscini, A., Cinti, F.R., 2010. Normal faults and thrusts reactivated by deep fluids: the 6 April 2009 Mw 6.3 L'Aquila earthquake, central Italy. J. Geophys. Res. 115, B06315. Ferreri, V., Weissert, H., D'Argenio, B., Buonocunto, F.P., 1997. Carbon isotope stratigraphy; a tool for basin to carbonate platform correlation. Terra Nova 9, 57–61. Frezzotti, M.L., Peccerillo, A., Panza, G., 2009. Carbonate metasomatism and CO2 lithosphere–asthenosphere degassing beneath the Western Mediterranean: an integrated model arising from petrological and geophysical data. Chem. Geol. 262, 108–120. Ghisetti, F., Kirschner, D.L., Vezzani, L., Agosta, F., 2001. Stable isotope evidence for contrasting paleofluid circulation in thrust faults and normal faults of the Central Apennines, Italy. J. Geophys. Res. 106, 8811–8825. Googas, 2007. Results of INGV-DPCV5 Project: The Catalogue of Italian Gas Emissions. http://googas.ov.ingv.it. Heinicke, J., Braun, T., Burgassi, P., Italiano, F., Martinelli, G., 2006. Gas flow anomalies in seismogenic zones in the Upper Tiber Valley, Central Italy. Geophys. J. Int. 167, 794–806. ISIDE, 2009. Italian Seismological Instrumental and Parametric Data-Base. INGV, http:// iside.rm.ingv.it. Italiano, F., Martinelli, G., Plescia, P., 2008. CO2 degassing over seismic areas: the role of mechanochemical production at the study case of Central Apennines. Pure Appl. Geophys. 165, 75–94. Italiano, F., Bonfanti, P., Ditta, M., Petrini, R., Slejko, F., 2009. Helium and carbon isotopes in the dissolved gases of Friuli Region (NE Italy): geochemical evidence of CO2 production and degassing over a seismically active area. Chem. Geol. 266, 76–85. Italiano, F., Bonfanti, P., Pizzino, L., Quattrocchi, F., 2010. Geochemistry of fluids discharged over the seismic area of the Southern Apennines (Calabria region, Southern Italy): implications for fluid–fault relationships. Appl. Geochem. 25, 540–554. Kennedy, B.M., Kharaka, Y., Evans, W.C., Ellwood, A., DePaolo, D.J., Thordsen, J., Ambats, G., Mariner, R.H., 1997. Mantle fluids in the San Andreas Fault system, California. Science 278, 1278–1281. Longinelli, A., Selmo, E., 2003. Isotopic composition of precipitation in Italy; a first overall map. J. Hydrol. 270, 75–88. Lucente F.P., De Gori P., Margheriti L., Piccinini D., Di Bona M., Chiarabba C., Agostinetti N.P., 2010. Temporal variation of seismic velocity and anisotropy before the 2009 M-W 6.3 L'Aquila earthquake, Italy. Geology 38, 1015–1018. Martelli, M., Nuccio, P.M., Stuart, F.M., Burgess, R., Ellam, R.M., Italiano, F., 2004. Helium–strontium isotope constraints on mantle evolution beneath the Roman Comagmatic Province, Italy. Earth Planet. Sci. Lett. 224, 295–308. Miller, S.A., Collettini, C., Chiaraluce, L., Cocco, M., Barchi, M., Kaus, B.J.P., 2004. Aftershocks driven by a high-pressure CO2 source at depth. Nature 427, 724–727. Minissale, A., Evans, W.C., Magro, G., Vaselli, O., 1997. Multiple gas components in gas manifestations from north-central Italy. Chem. Geol. 142, 175–192. Minissale, A., 2004. Origin, transport and discharge of CO2 in central Italy. Earth Sci. Rev. 66, 89–141. Morettini, E., Santantonio, M., Bartolini, A., Cecca, F., Baumgartner, P.O., Hunziker, J.C., 2002. Carbon isotope stratigraphy and carbonate production during the Early– Middle Jurassic; examples from the Umbria–Marche–Sabina Apennines (central Italy). Palaeogeogr. Palaeoecol. 184, 251–273. Ozima, M., Podosek, F.A., 2002. Noble Gas Geochemistry. Cambridge University Press, UK. Parkhurst, D.L., Appelo, C.A.J., 1999. User guide to PHREEQC (Version 2) — a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geol. Surv.Water Resour. Invest. Rep. 99–4259, p. 310. Peccerillo, A., 1999. Multiple mantle metasomatism in central-southern Italy: geochemical effects, timing and geodynamic implications. Geology 27, 315–318. Piccinini, D., Saccorotti, G., 2008. First observations of non-volcanic, long-period seismicity in the Central Apennines, Italy. Geophys. Res. Lett. 35, L12303. Rice, J.R., 1992. Fault stress states, pore pressure redistributions, and the weakness of the San Andreas fault. In: Evans, B., Wong, T.F. (Eds.), Fault Mechanics and Transport Properties of Rock. Academic Press Ltd., San Diego, pp. 476–503. Salvati, R., 2002. Natural hydrogeological laboratories; a new concept in regional hydrogeology studies; a case history from central Italy. Environ. Geol. 41, 960–965. Sibson, R.H., 2000. Fluid involvement in normal faulting. J. Geodyn. 29, 449–469. Terakawa, T., Zoporowski, A., Galvan, B., Miller, S.A., 2010. High-pressure fluid at hypocentral depths in the L'Aquila region inferred from earthquake focal mechanisms. Geology. doi:10.1130/G31457.1en
dc.description.obiettivoSpecifico2.4. TTC - Laboratori di geochimica dei fluidien
dc.description.obiettivoSpecifico4.5. Studi sul degassamento naturale e sui gas petroliferien
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorChiodini, G.en
dc.contributor.authorCaliro, S.en
dc.contributor.authorCardellini, C.en
dc.contributor.authorFrondini, F.en
dc.contributor.authorInguaggiato, S.en
dc.contributor.authorMatteucci, F.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentDipartimento di Scienze della Terra, Università di Perugia, Piazza dell'Università, 06123 Perugia, Italyen
dc.contributor.departmentDipartimento di Scienze della Terra, Università di Perugia, Piazza dell'Università, 06123 Perugia, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentDipartimento di Scienze della Terra, Università di Perugia, Piazza dell'Università, 06123 Perugia, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptDipartimento di fisica e Geologia di Perugia-
crisitem.author.deptDipartimento di Scienze della Terra, Universita` di Perugia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptDipartimento di Scienze della Terra, Università di Perugia, Piazza dell'Università, 06123 Perugia, Italy-
crisitem.author.orcid0000-0002-0628-8055-
crisitem.author.orcid0000-0002-8522-6695-
crisitem.author.orcid0000-0002-7539-9541-
crisitem.author.orcid0000-0003-3726-9946-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2011,ChiodinietalAbruzzoEPSL.pdf1.24 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

70
checked on Feb 10, 2021

Page view(s) 50

232
checked on Apr 17, 2024

Download(s)

54
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric