Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7005
DC FieldValueLanguage
dc.contributor.authorallEtiope, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallBaciu, C.; Babes-Bolyai University, Faculty of Environmental Science, Cluj-Napoca, Romaniaen
dc.contributor.authorallSchoell, M.; GasConsult International Inc., Berkeley, USAen
dc.date.accessioned2011-05-24T05:54:58Zen
dc.date.available2011-05-24T05:54:58Zen
dc.date.issued2011-01-07en
dc.identifier.urihttp://hdl.handle.net/2122/7005en
dc.description.abstractMethane (CH4) in terrestrial environments, whether microbial, thermogenic, or abiogenic, exhibits a large variance in C and H stable isotope ratios due to primary processes of formation. Isotopic variability can be broadened through secondary, post-genetic processes, such as mixing and isotopic fractionation by oxidation. The highest and lowest 13C and 2H (or D, deuterium) concentrations in CH4 found in various geologic environments to date, are defined as “natural” terrestrial extremes. We have discovered a new extreme in a natural gas seep with values of deuterium concentrations, δDCH4, up to+124‰that far exceed those reported for any terrestrial gas. The gas, seeping from the small Homorod mud volcano in Transylvania (Romania), also has extremely high concentrations of nitrogen (N92 vol.%) and helium (up to 1.4 vol.%). Carbon isotopes in CH4, C2H6 and CO2, and nitrogen isotopes in N2 indicate a primary organic sedimentary origin for the gas (a minor mantle component is suggested by the 3He/4He ratio, R/Ra~0.39). Both thermogenic gas formation modeling and Rayleigh fractionation modeling suggest that the extreme deuterium enrichment could be explained by an oxidation process characterised by a δDCH4 and δ13CCH4 enrichment ratio (ΔH/ΔC) of about 20, and may be accounted for by abiogenic oxidation mediated by metal oxides. All favourable conditions for such a process exist in the Homorod area, where increased heat flow during Pliocene–Quaternary volcanism may have played a key role. Finally we observed rapid variations (within 1 h) in C and H isotope ratios of CH4, and in the H2S concentrations which are likely caused by mixing of the deep oxidized CH4–N2–H2S–He rich gas with a microbial methane generated in the mud pool of one of the seeps. We hypothesize that the unusual features of Homorod gas can be the result of a rare combination of factors induced by the proximity of sedimentary organic matter, mafic, metal-rich volcanic rocks and salt diapirs,leading to the following processes: a) primary thermogenic generation of gas at temperatures between 130 and 175 °C; b) secondary alteration through abiogenic oxidation, likely triggered by the Neogene–Quaternary volcanism of the eastern Transylvanian margin; and c) mixing at the surface with microbial methane that formed through fermentation in the mud volcano water pool. The Homorod gas seep is a rare example that demonstrates how post-genetic processes can produce extreme gas isotope signatures (thus far only theorized), and that extremely positive δDCH4 values cannot be used to unambiguously distinguish between biotic and abiotic origin.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofChemical Geologyen
dc.relation.ispartofseries1-2/280 (2011)en
dc.subjectMethaneen
dc.subjectDeuteriumen
dc.subjectNitrogenen
dc.subjectHeliumen
dc.subjectSeepen
dc.subjectMud volcanoen
dc.titleExtreme methane deuterium, nitrogen and helium enrichment in natural gas from the Homorod seep (Romania)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber89-96en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistryen
dc.identifier.doi10.1016/j.chemgeo.2010.10.019en
dc.relation.referencesBaciu, C., Caracausi, C., Etiope, G., Italiano, F., 2007. Mud volcanoes and methane seeps in Romania: main features and gas flux. Ann. Geophys. 50, 501–512. Ballentine, C.J., Sherwood Lollar, B., 2002. Regional groundwater focusing of nitrogen and noble gases into the Hugoton-Panhandle giant gas field. USA. Geochim. Cosmochim. Acta 66, 2483–2497. Baylis, S.A., Cawley, S.J., Clayton, C.J., Savell, M.A., 1997. The origin of unusual gas seeps from onshore Papua New Guinea. Mar. Geol. 137, 109–120. Brown, A., 2005. Origin of high helium concentrations in dry gas by water fractionation. AAPG Research Conference Abstracts, Origin of Petroleum, June 18, 2005, Calgary, Alberta, Canada. Ciulavu, D., Dinu, C., Szakacs, A., Dordea, D., 2000. Neogene kinematics of the Transylvanian Basin (Romania). AAPG Bull. 84, 1589–1615. Clayton, C., 2003. Hydrogen isotope systematics of thermally generated natural gas. Presented at Int. Meet. Org. Geochem., 21st, Kraków, Poland, Book of Abstracts, Part I, pp. 51–52. Coleman, D.D., Risatti, J.B., Schoell, M., 1981. Fractionation of carbon and hydrogen isotopes by methane oxidising bacteria. Geochim. Cosmochim. Acta 45, 1033–1037. Craig, H., 1961. Isotopic variations in meteoric waters. Science 133, 1702–1703. Das, N.K., Bhandari, R.K., Sen, P., Sinha, B., 2005. The helium potential of India. Curr. Sci. 88, 1883–1888. Downes,H., Seghedi, I., Szakacs, A., Dolosi, G., James, D.E., Vaselli,O., Rigby, I.J., Ingram, G.A., Rex, D., Pecskay, Z., 1995. Petrology and geochemistry of late Tertiary/Quaternary mafic alkaline volcanism in Romania. Lithos 35, 65–81. Etiope, G., Martinelli, G., Caracausi, A., Italiano, F., 2007.Methane seeps andmud volcanoes in Italy: gas origin, fractionation and emission to the atmosphere. Geophys. Res. Lett. 34, L14303. Etiope, G., Feyzullayev, A., Baciu, C.L., 2009a. Terrestrial methane seeps and mud volcanoes: a global perspective of gas origin. Mar. Petrol. Geol. 26, 333–344. Etiope,G., Feyzullayev, A.,Milkov, A.V.,Waseda, A.,Mizobe, K., Sun,C.H., 2009b. Evidence of subsurface anaerobic biodegradation of hydrocarbons and potential secondary methanogenesis in terrestrial mud volcanoes. Mar. Petrol. Geol. 26, 1692–1703. Filipescu, M.N., Huma, I., 1979. Geochemistry of natural gases (in Romanian): Acad. RSR,. 175 p., Bucharest. Gage, B.D., Driskill, D.L., 2004. The helium resources of the United States, 2003, Technical Note 415. Bureau of Land Management. BLM/NM/ST-04/002+3745. 35 pp. Huismans, R.S., Bertotti, G., Ciulavu, D., Sanders, C.A.E., Cloetingh, S., Dinu, C., 1997. Structural evolution of the Transylvanian Basins (Romania): a sedimentary basin in the bend zone of the Carpathians. Tectonophysics 272, 249–268. Hunt, J.M., 1996. Petroleum Geochemistry and Geology. W.H. Freeman and Co., New York. 743 pp. Jenden, P.D., Hilton, D.R., Kaplan, I.R., Craig, H., 1993. Abiogenic hydrocarbons and mantle helium in oil and gas fields. In: Howell, D. (Ed.), Future of Energy Gases. USGS. Prof. Pap. 1570, 31–35. Kinnaman, F.S., Valentine, D.L., Tyler, S.C., 2007. Carbon and hydrogen isotope fractionation associated with the aerobic microbial oxidation of methane, ethane, propane and butane. Geochim. Cosmochim. Acta 71, 271–283. Kiyosu, Y., Imaizumi, S., 1996. Carbon and hydrogen isotope fractionation during oxidation of methane by metal oxides at temperatures from 400° to 530 °C. Chem. Geol. 133, 279–287. Kotarba, M.J., 2001. Composition and origin of coalbed gases in the Upper Silesian and Lublin basins. Poland. Org. Geochem. 32, 163–180. Krézsek, Cs., Bally, W.A., 2006. The Transylvanian Basin (Romania) and its relation to the Carpathian fold and thrust belt: insights in the gravitational salt tectonics. Mar. Petrol. Geol. 23, 405–442. Krézsek, Cs., Filipescu, S., Silye, L., Matenco, L., Doust, H., 2010.Miocene facies associations and sedimentary evolution of the Southern Transylvanian Basin (Romania): implications for hydrocarbon exploration. Mar. Petrol. Geol. 27, 191–214. Krooss, B.M., Littke, R.,Muller, B., Frielingsdorf, J., Schwochau,K., Idiz, E.F., 1995.Generation of nitrogen and methane from sedimentary organic matter: implications on the dynamics of natural gas accumulations. Chem. Geol. 126, 291–318. Laier, T., Nytoft, P., 1995. Isotopically heavy hydrocarbon gases and bitumen in the Precambrian Ilimaussaq Intrusion. In: Grimalt, J.O., Dorronsoro, C. (Eds.), Organic Geochemistry: Developments and Applications to Energy, Climate, Environment and Human History — 17th Int. Meeting Org. Geochem., San Sebastian 4–8 September, 1995, pp. 1109–1111. Milkov, A.V., Dzou, L., 2007. Geochemical evidence of secondary microbial methane from very slight biodegradation of undersaturated oil in a deep hot reservoir. Geology 35, 455–458. Motyka, R.J., Poreda, R.J., Jeffrey, W.A., 1989. Geochemistry, isotopic composition, and origin of fluids emanating from mud volcanoes in the Copper River basin Alaska. Geochim. Cosmochim. Acta 53, 29–41. Oremland, R.S., Whiticar, M.J., Strohmaier, F.E., Kiene, R.P., 1988. Bacterial ethane formation from reduced, ethylated sulfur compounds in anoxic sediments. Geochim. Cosmochim. Acta 52, 1895–1904. Pallasser, R.J., 2000. Recognising biodegradation in gas/oil accumulations through the δ13C compositions of gas components. Org. Geochem. 31, 1363–1373. Popescu, B.M., 1995. Romania's petroleum systems and their remaining potential. Pet. Geosci. 1, 337–350. Runge, A., 1980. Kohlenstoff- und Wasserstoff- Isotopenvariationen in organischen Sedimenten und in Gasen. Chem. Erde 39, 52–62. Sackett, W.M., 1978. Carbon and hydrogen effects during thermocatalytic production of hydrocarbons in laboratory simulation experiments. Geochim. Cosmochim. Acta 42, 571–580. Sano, Y., Wakita, H., 1988. Helium isotope ratio and heat discharge rate in the Hokkaido Island, Northeast Japan. Geochem. J. 22, 293–303. Schimmelmann,A., Strapoc, D., Sauer, P.E., Fong, J., 2007. 5-year, 100–240 °C heating of oils and source rocks in waters with different δD: CF-IRMS of C1–C4 hydrocarbon gases records H-isotope exchange with H2O. 7th International Symposium on Applied IsotopeGeochemistry, 10–14 September, Stellenbosch, South Africa, AbstractVolume, pp. 129–130. Schoell, M., 1980. The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochim. Cosmochim. Acta 44, 649–661. Schoell, M., 1984. Wasserstoff und Kohlenstoffisotope in organischen Substanzen, Erdölen und Erdgasen, Geologisches Jahrbuch Reihe D Heft 64, 164p. Schweizerbart, Stuttgart. Schoell, M., 1988. Multiple origins of methane in the Earth. Chem. Geol. 71, 1–10. Sephton, M.A., Botta, O., 2005. Recognizing life in the solar system: guidance from meteoritic organic matter. Int. J. Astrobiol. 4, 269–276. Sherwood Lollar, B., McCollom, T.M., 2006. Geochemistry — biosignatures and abiotic constraints on early life. Nature 444, E18-E18. Tang, Y., Perry, J.K., Jenden, P.D., Schoell, M., 2000. Mathematical modeling of stable carbon isotope ratios in natural gases. Geochim. Cosmochim. Acta 64, 2673–2687. Vaselli, O., Minissale, A., Tassi, F., Magro, G., Seghedi, I., Ioane, D., Szakacs, A., 2002. A geochemical traverse across the Eastern Carpathians (Romania): constraints on the origin and evolution of the mineral water and gas discharges. Chem. Geol. 182, 637–654. Veliciu, S., 1987. Geothermics of the Carpathian area. Ann. Inst. Geol. Geof. 67, 81–116. Welhan, J.A., 1988. Origins of methane in hydrothermal systems. Chem. Geol. 71, 183–198. Whiticar, M.J., 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol. 161, 291–314. Whiticar, M.J., Faber, E., Schoell, M., 1986. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation—isotope evidence. Geochim. Cosmochim. Acta 50, 693–709. Woltemate, I., Whiticar, M.J., Schoell, M., 1984. Carbon and hydrogen isotopic composition of bacterial methane in a shallow freshwater lake. Limnol. Oceanogr. 29, 985–992. Worden, R.H., Smalley, P.C., Oxtoby, N.H., 1995. Gas souring by thermochemical sulfate reduction at 140 °C. AAPG Bull. 79, 854–863. Zhu, Y., Shi, B., Fang, C., 2000. The isotopic compositions of molecular nitrogen: implications on their origins in natural gas accumulations. Chem. Geol. 164, 321–330. 96 G. Etiope et al. / Chemical Geology 280 (2011) 89–96en
dc.description.obiettivoSpecifico4.5. Studi sul degassamento naturale e sui gas petroliferien
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorEtiope, G.en
dc.contributor.authorBaciu, C.en
dc.contributor.authorSchoell, M.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentBabes-Bolyai University, Faculty of Environmental Science, Cluj-Napoca, Romaniaen
dc.contributor.departmentGasConsult International Inc., Berkeley, USAen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptGasConsult International Inc., Berkeley, USA-
crisitem.author.orcid0000-0001-8614-4221-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Eti-Bac-Sch-HOMOROD-ChemGeo.pdf1.57 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

35
checked on Feb 10, 2021

Page view(s) 50

231
checked on Apr 24, 2024

Download(s)

45
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric