Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7003
DC FieldValueLanguage
dc.contributor.authorallSettimi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallTutone, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallBaskaradas, J. A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallBianchi, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallZirizzotti, A. E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallSantarato, G.; UNIVERSITÀ DEGLI STUDI DI FERRARA, Dipartimento di Scienze della Terraen
dc.date.accessioned2011-05-20T10:24:31Zen
dc.date.available2011-05-20T10:24:31Zen
dc.date.issued2011-05-20en
dc.identifier.urihttp://hdl.handle.net/2122/7003en
dc.description.abstractThe RESPER probe has been assembled, except the metallic points that must ensure the contact, by insulating materials and more specifically in Tufnol, as regards the support plates, and Teflon, as regards the standoffs. A series of holes has been drilled on the surface of support plates in order to allow approaching each other of the two central electrodes to external ones, from a minimum of 4.29 cm to a maximum of 10 cm, as shown in the table of configurations. The dipole-dipole array defined by the integer parameter n = 6 could not be implemented, as the positioning of suitable “spring” poles requires 6 mm holes and an adequate space could not be available to carry out the drilling. The presence of these “spring” poles allows reaching a right prominence of the tip from the base and, at the same time, a certain amount of pressure which ensures the proper adherence to the artifact that must be tested. There is a brass screw within each pole, which edge has been turned to the measurement of 1.4 mm. Four metal spacers are replaced of time in time depending on the configuration that is to be adopted. The achievement of height l(n) from the plates is ensured by the presence of metallic spacers, which dimensions are reported. To complete the description, a copper cable, 1 m long and with a 4.0 mm2 section area, has been welded to the head of each electrode. The two transmitting or reading cables are kept at a fixed distance L(n) between them by means of Teflon rods in which has been applied the same series of holes existing on the Tufnol plates.en
dc.description.sponsorshipIstituto Nazionale di Geosisica e Vulcanologia (INGV)en
dc.language.isoEnglishen
dc.relation.ispartofRapporti Tecnici INGVen
dc.relation.ispartofseries191/ (2011)en
dc.subjectRESPER Probeen
dc.subjectDipole-dipole arrayen
dc.subjectWenner arrayen
dc.subjectGalvanic and capacitive contacten
dc.subjectTerrestrial soilsen
dc.subjectConcretesen
dc.titlePreliminary design of a RESPER probe prototype, configured in a multi dipole-dipole array.en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniquesen
dc.relation.referencesAl-Qadi, I. L., Hazim, O. A., Su, W. and Riad, S. M., (1995). Dielectric properties of Portland cement concrete at low radio frequencies. J. Mater. Civil. Eng., 7(3), 192-198. Andren, C. and Fakatselis, J. ,(1995). Digital IF Sub Sampling Using the HI5702, HSP45116 and HSP43220. App. Note, Harris DSP and Data Acq., No. AN9509.1 . Benderitter, Y., Jolivet, A., Mounir, A. and Tabbagh, A., (1994). Application of the electrostatic quadripole to sounding in the hectometric depth range. J. Appl. Geophys., 31 (1-4), 1–6. Del Vento, D. and Vannaroni, G., (2005). Evaluation of a mutual impedance probe to search for water ice in the Martian shallow subsoil. Rev. Sci. Instrum., 76, 084504 (1-8). Edwards, R. J., (1998). Typical Soil Characteristics of Various Terrains (http://www.smeter.net/grounds/soil-electrical-resistance.php). Frolich, H., (1990). Theory of Dielectrics. Oxford University Press, Oxford. Grard, R., (1990a). A quadrupolar array for measuring the complex permittivity of the ground: application to earth prospection and planetary exploration. Meas. Sci. Technol., 1, 295-301. Grard, R., (1990b). A quadrupole system for measuring in situ the complex permittvity of materials: application to penetrators and landers for planetary exploration. Meas. Sci. Technol., 1, 801-806. Grard, R. and Tabbagh, A., (1991). A mobile four electrode array and its application to the electrical survey of planetary grounds at shallow depth. J. Geophys. Res., 96 (B3), 4117-4123. Jankovic, D. and Öhman, J., (2001). Extraction of in-phase and quadrature components by IF-sampling. Master Thesis, Department of Signals and Systems, Cahlmers University of Technology, Goteborg, 80 pp (carried out at Ericson Microwave System AB). Kaiser, T. R. (1962). The admittance of an electric dipole in a magnetoionic environment. Planet. Space Sci., 9 (10), 639-657. Knight, R. J. and Nur, A., (1987). The dielectric constant of sandstone, 60 kHz to 4 MHz. Geophysics, 52 (5), 644-654. Laurents, S., Balayssac, J. P., Rhazi, J., Klysz, G. and Arliguie, G., (2005). Non-destructive evaluation of concrete moisture by GPR: experimental study and direct modelling. Materials and Structures (M&S), 38, 827-832. Loke, M. H., (1999). Electrical imaging survey for environmental and engineering studies. Technical Notes (http://www.terrajp.co.jp/lokenote.pdf). Murray-Smith, D. J., (1987). Investigations of methods for the direct assessment of parameter sensitivity in linear closed-loop control systems. In: Complex and distributed systems: analysis, simulation and control (S. G Tzafestas. and P. Borne Eds), North-Holland, Amsterdam, pp. 323–328. Myounghak, O., Yongsung, K. and Junboum, P., (2007). Factors affecting the complex permittivity spectrum of soil at a low frequency range of 1 kHz-10 MHz. Environ Geol., 51, 821-833. Oppenheim, A. V., Schafer, R. W. and Buck, J. R., (1999). Discrete-Time Signal Processing. Prentice Hall International, Inc., New York - II Ed. Polder, R., Andrade, C., Elsener, B., Vennesland, Ø., Gulikers, J., Weidert, R. and Raupach, M., (2000). Test methods for on site measurements of resistivity of concretes. Materials and Structures (M&S), 33, 603-611. Razavi, B., (1995). Principles of Data Conversion System Design. Wiley-IEEE Press, New York. Settimi, A., Zirizzotti, A., Baskaradas, J. A. and Bianchi, C., (2010a). Inaccuracy assessment for simultaneous measurement of resistivity and permittivity applying sensitivity and transfer function approaches. Ann. Geophys. – Italy, 53 (2), 1-19; ibid., Earth-prints, http://hdl.handle.net/2122/6111 (2010); ibid., arXiv:0908.0641v3 [physics.geophysiscs] (2009). Settimi, A., Zirizzotti, A., Baskaradas, J. A. and Bianchi, C., (2010b). Optimal requirements of a data acquisition system for a quadrupolar probe employed in electrical spectroscopy. Ann. Geophys. – Italy, 53 (4), 11-26; ibid., Earth-prints, http://hdl.handle.net/2122/6405 (2010); ibid., arXiv:0908.0648v4 [physics.geophysiscs] (2009). Settimi, A., Zirizzotti, A., Baskaradas, J. A. and Bianchi, C., (2010c). Design of an induction probe for simultaneous measurements of permittivity and resistivity. Quaderni di Geofisica 79; ibid., Earth-prints, http://hdl.handle.net/2122/6108 (2010); ibid., arXiv:0908.0651v3 [physics.geophysiscs] (2009). Settimi, A., (2010d). Fourier Domain Analysis performances of a RESPER probe – Amplitude and Phase inaccuracies due to the Round off noise of FFT processors. Rapporti Tecnici INGV 159; ibid. Earth-prints, http://hdl.handle.net/2122/6127 (2010); ibid., arXiv:1009.1832v2 [physics.geo-ph] (2010). Scofield, J. H., (1994). A Frequency-Domain Description of a Lock-in Amplifier. American Journal of Physics (AJP), 62 (2), 129-133. Tabbagh, A., Hesse, A. and Grard, R., (1993). Determination of electrical properties of the ground at shallow depth with an electrostatic quadrupole: field trials on archaeological sites. Geophys. Prospect., 41, 579-597. Vannaroni, G., Pettinelli, E., Ottonello, C., Cereti, A., Della Monica, G., Del Vento, D., Di Lellis, A. M., Di Maio, R., Filippini, R., Galli, A., Menghini, A., Orosei, R., Orsini, S., Pagnan, S., Paolucci, F., Pisani, A. R., Schettini, G., Storini, M. and Tacconi, G., (2004). MUSES: multi-sensor soil electromagnetic sounding. Planet. Space Sci., 52, 67–78. Zirizzotti, A. E., Baskaradas, J. A., Bianchi, C., Santarato, G., Settimi, A., Istituto Nazionale di Geofisica e Vulcanologia (INGV). Probe of dielectric permittivity and electrical resistivity for non-invasive surveys on materials. Italian patent application for industrial invention N. RM2010A000479 to Ministero dello Sviluppo Economico, Ufficio Italiano Brevetti e Marchi (13/09/2010).en
dc.description.obiettivoSpecifico1.8. Osservazioni di geofisica ambientaleen
dc.description.journalTypeN/A or not JCRen
dc.description.fulltextopenen
dc.contributor.authorSettimi, A.en
dc.contributor.authorTutone, G.en
dc.contributor.authorBaskaradas, J. A.en
dc.contributor.authorBianchi, C.en
dc.contributor.authorZirizzotti, A. E.en
dc.contributor.authorSantarato, G.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentUNIVERSITÀ DEGLI STUDI DI FERRARA, Dipartimento di Scienze della Terraen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptSAP, School of Electrical and Electronics Engineering-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto di Mineralogia, Università di Ferrara, Italy-
crisitem.author.orcid0000-0002-9487-2242-
crisitem.author.orcid0000-0002-0217-5379-
crisitem.author.orcid0000-0001-7586-9219-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
rapporto191.pdfMain Report2.17 MBAdobe PDFView/Open
Show simple item record

Page view(s) 20

545
checked on Apr 17, 2024

Download(s) 50

123
checked on Apr 17, 2024

Google ScholarTM

Check