Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7002
DC FieldValueLanguage
dc.contributor.authorallBattaglia, M.; Department of Earth Sciences, Sapienza, University of Rome, Italyen
dc.contributor.authorallDi Bari, M.; Department of Geology and Geophysics, University of Bari, Italyen
dc.contributor.authorallAcocella, V.; Dipartimento di Scienze Geologiche, Università Roma Tre, Roma, Italyen
dc.contributor.authorallNeri, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.date.accessioned2011-05-20T08:25:34Zen
dc.date.available2011-05-20T08:25:34Zen
dc.date.issued2011-01-01en
dc.identifier.urihttp://hdl.handle.net/2122/7002en
dc.description.abstractMany volcanic edifices are subject to flank failure, usually produced by a combination of events, rather than any single process. From a dynamic point of view, the cause of collapse can be divided into factors that contribute to an increase in shear stress, and factors that contribute to the reduction in the friction coefficient μ of a potential basal failure plane. We study the potential for flank failure at Mount Etna considering a schematic section of the eastern flank, approximated by a wedge-like block. For such geometry, we perform a (steady state) limit equilibrium analysis: the resolution of the forces parallel to the possible basal failure plane allows us to determine the total force acting on the potentially unstable wedge. An estimate of the relative strength of these forces suggests that, in first approximation, the stability is controlled primarily by the balance between block weight, lithostatic load and magmatic forces. Any other force (sea load, hydrostatic uplift, and the uplift due to mechanical and thermal pore-fluid pressure) may be considered of second order. To study the model sensitivity, we let the inferred slope α of the basal surface failure vary between −10° and 10°, and consider three possible scenarios: no magma loading, magmastatic load, and magmastatic load with magma overpressure. We use error propagation to include in our analysis the uncertainties in the estimates of the mechanics and geometrical parameters controlling the block equilibrium. When there is no magma loading, the ratio between destabilizing and stabilizing forces is usually smaller than the coefficient of friction of the basal failure plane. In the absence of an initiating mechanism, and with the nominal values of the coefficient of friction μ = 0.7 ± 0.1 proposed, the representative wedge will remain stable or continue to move at constant speed. In presence of magmastatic forces, the influence of the lateral restraint decreases. If we consider the magmastatic load only, the block will remain stable (or continue to move at constant speed), unless the transient mechanical and thermal pressurization significantly decrease the friction coefficient, increasing the instability of the flank wedge for α > 5° (seaward dipping decollement). When the magma overpressure contribution is included in the equilibrium analysis, the ratio between destabilizing and stabilizing forces is of the same order or larger than the coefficient of friction of the basal failure plane, and the block will become unstable (or accelerate), especially in the case of the reduction in friction coefficient. Finally, our work suggests that the major challenge in studying flank instability at Mount Etna is not the lack of an appropriate physical model, but the limited knowledge of the mechanical and geometrical parameters describing the block equilibrium.en
dc.description.sponsorshipThis work was funded by Istituto Nazionale di Geofisica e Vulcanologia (INGV) and the Italian Dipartimento per la Protezione Civile (DPC) (DPC-INGV project V4 “Flank”).en
dc.language.isoEnglishen
dc.publisher.nameElsevier B.V.en
dc.relation.ispartofJournal of Volcanology and Geothermal Researchen
dc.relation.ispartofseries/199 (2011)en
dc.subjectEtnaen
dc.subjectdike intrusionen
dc.subjectflank instabilityen
dc.subjectporo-elasticityen
dc.subjectanalytical modellingen
dc.titleDike emplacement and flank instability at Mount Etna: Constraints from a poro-elastic-model of flank collapseen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber153-164en
dc.subject.INGV04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processesen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zonesen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.09. Structural geologyen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamicsen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.05. Stressen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonicsen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.03. Magmasen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risken
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.99. General or miscellaneousen
dc.identifier.doi10.1016/j.jvolgeores.2010.11.005en
dc.relation.referencesAcocella, V., 2005. Modes of sector collapse of volcanic cones: insights from analogue experiments. J. Geophys. Res. 110, B02205. doi:10.1029/2004JB003166. Acocella, V., Neri, M., 2003. What makes flank eruptions? The 2001 Mount Etna eruption and its possible triggering mechanisms. Bull. Volcanol. 65, 517–529. doi:10.1007/s00445-003-0280-3. Acocella, V., Neri, M., 2005. Structural features of an active strike–slip fault on the sliding flank of Mt. Etna (Italy). J. Struct. Geol. 27, 343–355. doi:10.1016/j. jsg.2004.07.006. Acocella, V., Neri, M., 2009. Dike propagation in volcanic edifices: overview and possible developments. Tectonophysics 471, 67–77. doi:10.1016/j.tecto.2008.10.002. Acocella, V., Behncke, B., Neri, M., D'Amico, S., 2003. Link between major flank slip and 2002–2003 eruption atMt. Etna (Italy). Geophys. Res. Lett. 30, 2286. doi:10.1029/ 2003GL018642. Allard, P., Behncke, B., D'Amico, S., Neri, M., Gambino, S., 2006. Mount Etna 1993–2005: anatomy of an evolving eruptive cycle. Earth Sci. Rev. 78, 85–114. doi:10.1016/j. earscirev.2006.04.002. Aloisi, M., Bonaccorso, A., Gambino, S., 2006. Imaging compositive dike propagation (Etna, 2002 case). J. Geophys. Res. 111, B06404. doi:10.1029/2005JB003908. Beeler, N.M., Simpson, R.W., Hickman, S.H., Lockner, D.A., 2000. Pore fluid pressure, apparent friction, and Coulomb failure. J. Geophys. Res. 105 (B11), 25,533–25,542. doi:10.1029/2000JB900119. Behncke, B., Neri, M., 2003. The July–August 2001 eruption of Mt. Etna (Sicily). Bull. Volcanol. 65, 461–476. doi:10.1007/s00445-003-0274-1. Bonaccorso, A., Aloisi, M., Mattia, M., 2002. Dike emplacement forerunning the Etna July 2001 eruption modeled through continuous tilt and GPS data. Geophys. Res. Lett. 29. doi:10.1029/2001GL014397. Bonforte, A., Puglisi, G., 2006. Dynamics of the eastern flank of Mt. Etna volcano (Italy) investigated by a dense GPS network. J. Volcanol. Geoth. Res. 153, 357–369. doi:10.1016/j.jvolgeores.2005.12.005. Bonforte, A., Bonaccorso, A., Guglielmino, F., Palano, M., Puglisi, G., 2008. Feeding system and magma storage beneath Mt. Etna as revealed by recent inflation/ deflation cycles. J. Geophys. Res. 113, B05406. doi:10.1029/2007JB005334. Bonforte, A., Gambino, S., Neri, M., 2009. Intrusion of eccentric dikes: The case of the 2001 eruption and its role, in. The dynamics of Mt. Etna volcano, Special Issue, Volcanoes. Tectonophysics 471, 78–86. doi:10.1016/j.tecto.2008.09.028. Borgia, A., Ferrari, L., Pasquarè, G., 1992. Importance of gravitational spreading in the tectonic and volcanic evolution of Mount Etna. Nature 357, 231–235. Borgia, A., Lanari, R., Sansosti, E., Tesauro, M., Berardino, P., Fornaro, G., Neri, M., Murray, J.B., 2000. Actively growing anticlines beneath Catania from the distal motion of Mount Etna's decollement measured by SAR interferometry and GPS. Geophys. Res. Lett. 27, 3409–3412. doi:10.1029/1999GL008475. Bousquet, J.C., Lanzafame, G., 2001. Nouvelle interprétation des fractures des éruptions latérales de l'Etna: conséquences pour son cadre tectonique. Bull. Soc. Géol. Fr. 172, 455–467. Branca, S., Del Carlo, P., Lo Castro, M.D., De Beni, E., Wijbrans, J.R., 2008. The occurrence of Mt Barca flank eruption in the evolution of the NW periphery of Etna volcano (Italy). Bull. Volcanol. 71, 79–94. doi:10.1007/s0045-008-0210-5. Brusca, L., Aiuppa, A., D'Alessandro,W., Parello, F., Allard, P.,Michel, A., 2001. Geochemical mapping of magmatic gas–water–rock interactions in the aquifer of Mount Etna volcano. J. Volcanol. Geoth. Res. 108, 199–218. doi:10.1016/S0377-0273(00)00286-9. Byerlee, J., 1978. Friction of rocks. Pure Appl. Geophys. 116, 615–626. Carbone, D., D'Amico, S., Musumeci, C., Greco, F., 2009. Comparison between the 1994– 2006 seismic and gravity data from Mt. Etna: new insight into the long-term behavior of a complex volcano. Earth Planet. Sci. Lett. 297, 282–292. doi:10.1016/ j.epsl.2009.01.007. Carracedo, J.C., Day, S.J., Guillou, H., Torrado, F.J.P., 1999. Giant Quaternary landslides in the evolution of La Palma and El Hierro, Canary Islands. J. Volcanol. Geoth. Res. 94, 169–190. Cervelli, P., Segall, P., Johnson, K., Lisowski, M., Miklius, A., 2002. Sudden aseismic fault slip on the south flank of Kilauea volcano. Nature 415, 1014–1018. Corsaro, R.A., Neri, M., Pompilio, M., 2002. Paleo-enviromental and volcano-tectonic evolution of the south-eastern flank of Mt. Etna during the last 225 ka inferred from the volcanic succession of the ‘Timpe’, Acireale, Sicily. J. Volcanol. Geoth. Res. 113, 289–306. doi:10.1016/S0377-0273(01)00262-1. Currenti, G., Del Negro, C., Ganci, G., 2008. Finite element modeling of ground deformation and gravity field at Mt. Etna. Ann. Geophys. 51, 105–119. Currenti, G., Del Negro, C., Di Stefano, A., Napoli, R., 2009. Numerical simulation of stress induced piezomagnetic fields at Etna volcano. Geophys. J. Int. 179, 1469–1476. doi:10.1111/j.1365-246X.2009.04381.x. Day, S., 1996. Hydrothermal pore fluid pressure and the stability of porous, permeable volcanoes. In: McGuire, W.J., Jones, A.P., Newberg, J. (Eds.), Volcano instability on the Earth and Other Planets. Spec. Pub., 110. Geol. Soc, London, pp. 77–93. Day, S.J., Heleno da Silva, S.I.N., Fonseca, J.F.B.D., 1999. A past giant lateral collapse and present-day flank instability of Fogo, Cape Verde Islands. J. Volcanol. Geoth. Res. 94, 191–218. Delaney, P.T., 1982. Rapid intrusion of magma into wet rock: groundwater flow due to pore pressure increases. J. Geophys. Res. 87 (B9), 7739–7756. doi:10.1029/ JB087iB09p07739. Delaney, P.T., Delinger, R.P., 1999. Stabilization of volcanic flanks by dike intrusion: an example from Kilauea. Bull. Volcanol. 61, 356–362. doi:10.1007/s004450050278. Delaney, P.T., Denlinger, R.P., Lisowski, M., Miklius, A., Okubo, P.G., Okamura, A.T., Sako, M.K., 1998. Volcanic spreading at Kilauea. J. Geophys. Res. 103 (B8), 18,003–18,023. doi:10.1029/98JB01665 1976–1996. Elsworth, D., Day, S.J., 1999. Flank collapse triggered by intrusion: the Canarian and Cape Verde Archipelagoes. J. Geophys. Res. 94, 323–340. Elsworth, D., Voight, B., 1992. Theory of dike intrusion in a saturated porous solid. J. Geophys. Res. 97, 9105–9117. Elsworth, D., Voight, B., 1995. Dike intrusion as a trigger for large earthquakes and the failure of volcano flanks. J. Geophys. Res. 100, 6005–6024. Fredrich, J.T., Martin, J.W., Clayton, R.B., 1995. Induced pore pressure response during undrained deformation of tuff and sandstone. Mech. Mater. 20, 95–104. Froger, J., Merle, O., Briole, P., 2001. Active spreading and regional extension at Mount Etna imaged by SAR interferometry. Earth Planet. Sci. Lett. 187, 245–258. Groppelli, G., Tibaldi, A., 1999. Control of rock rheology of deformation style and sliprate along the active Pernicana fault, Mt. Etna, Italy. Tectonophysics 305, 521–537. Hall, M.L., Robin, C., Beate, B., Mothes, P., Monzier, M., 1999. Tungurahua Volcano, Ecuador: structure, eruptive history and hazards. J. Volcanol. Geoth. Res. 91, 1–21. INGV Palermo, www.pa.ingv.it/sorveglianza/etna/falde.html. Kieffer, G., 1985. Évolution structurale et dynamique d'un grand volcan polygénique: stade d'édification et activité actuelle de l'Etna. PhD Thesis, Univ. Clermont- Ferrand II. 497 pp. Lo Giudice, E., Rasà, R., 1992. Very shallow earthquakes and brittle deformation in active volcanic areas: the Etnean region as an example. Tectonophysics 202, 257–268. Masson,D.G.,Watts, A.B.,Gee,M.J.R., Urgeles, R.,Mitchell,N.C., Le Bas, T.P., Canals,M., 2002. Slope failures on the flanks of the western Canary Islands. Earth Sci. Rev. 57, 1–35. McGuire, W.J., 1996. In: McGuire, W.J., Jones, A.P., Newberg, J. (Eds.), Spec. Pub., 110. Geol. Soc, London, pp. 1–23. Morrow, C.A., Moore, D.E., Lockner, D.A., 2000. The effect of mineral bond strength and adsorbed water on fault gouge frictional strength. Geophys. Res. Lett. 27, 815–818. Neri, M., Acocella, V., 2006. The 2004–2005 Etna eruption. Implications for flank deformation and structural behavior of the volcano. J. Volcanol. Geoth. Res. 158, 195–206. doi:10.1016/j.jvolgeores.2006.04.022. Neri, M., Acocella, V., Behncke, B., 2004. The role of the Pernicana Fault Systemin the spreading of Mt. Etna (Italy) during the 2002–2003 eruption. Bull. Volcanol. 66, 417–430. doi:10.1007/S00445-003-0322-X. Neri, M., Acocella, V., Behncke, B., Maiolino, V., Ursino, A., Velardita, R., 2005. Contrasting triggering mechanisms of the 2001 and 2002–2003 eruptions of Mount Etna (Italy). J. Volcanol. Geoth. Res. 144, 235–255. doi:10.1016/j.jvolgeores.2004.11.025. Neri, M., Gugliemino, F., Rust, D., 2007. Flank instability on Mount Etna: radon, radar interferometry and geodetic data from the southern boundary of the unstable sector. J. Geophys. Res. 112. doi:10.1029/2006JB004756. Neri, M., Mazzarini, F., Tarquini, S., Bisson, M., Isola, I., Behncke, B., Pareschi, M.T., 2008. The changing face of Mount Etna's summit area documented with Lidar. Geophys. Res. Lett. 35, L09305. doi:10.1029/2008GL033740. Neri, M., Casu, F., Acocella, V., Solaro, Pepe, S., Berardino, P., Sansosti, E., Catalbiano, P., Lundgren, P., Lanari, R., 2009. Deformation and eruptions at Mt. Etna (Italy): a lesson from 15 years of observations. Geophys. Res. Lett. 36, L02309. doi:10.1029/ 2008GL036151. Palano,M., Puglisi, G., Gresta, S., 2008. Ground deformation patterns atMt. Etna from 1993 to 2000 from joint use of InSAR and GPS techniques. J. Volcanol. Geoth. Res. 119, 99–120. Puglisi, G., Bonforte, A., Ferretti, A., Guglielmino, F., Palano, M., Prati, C., 2008. Dynamics of Mount Etna before, during, and after the July–August 2001 eruption inferred from GPS and differential synthetic aperture radar interferometry data. J. Geophys. Res. 113, B06405. doi:10.1029/2006JB004811. Ramana, Y.V., Gotge, B.S., 1989. Dependence of coefficient of sliding friction in rocks on lithology and mineral characteristics. Eng. Geol. 26, 271–279. Reid, M.E., 2004. Massive collapse of volcano edifices triggered by hydrothermal pressurization. Geology 32, 373–376. doi:10.1130/G20300.1. Romano, R., 1982. Succession of volcano activity in the Etnean area. In: Romano, R. (Ed.), Mount Etna Volcano, a Review of Recent Earth Sciences Studies: Mem. Soc. Geol. It., 23, pp. 27–48. Ruch, J., Acocella, V., Storti, F., Neri, M., Pepe, S., Solaro, G., Sansosti, E., 2010. Detachment depth revealed by rollover deformation: an integrated approach at Mount Etna. Geophys. Res. Lett. 37, L16304. doi:10.1029/2010GL044131. Rust, D., Neri, M., 1996. The boundaries of large-scale collapse on the flanks of Mount Etna, Sicily. In: McGuire, W.J., Jones, A.P., Newberg, J. (Eds.), Volcano instability on the earth and other planets. Spec. Pub., 110. Geol. Soc, London, pp. 193–208. doi:10.1144/GSL.SP.1996.110.01.15. Rust, D., Behncke, B., Neri, M., Ciocanel, A., 2005. Nested zones of instability in the Mount Etna volcanic edifice, Sicily. J. Volcanol. Geoth. Res. 144, 137–153. doi:10.1016/j.jvolgeores.2004.11.021. Schellart, W.P., 2000. Shear test results for cohesion and friction coefficients for different granular materials: scaling implications for their usage in analogue modelling. Tectonophysics 324, 1–16. Solaro, G., Acocella, V., Pepe, S., Ruch, J., Neri, M., Sansosti, E., 2010. Anatomy of an unstable volcano from InSAR: multiple processes affecting flank instability at Mt. Etna, 1994–2008. J. Geophys. Res. 115, B10405. doi:10.1029/2009JB000820. Tibaldi, A., 2001. Multiple sector collapses at Stromboli volcano, Italy: how they work. Bull. Volcanol. 63, 112–125. Tibaldi, A., Groppelli, G., 2002. Volcano-tectonic activity along structures of the unstable NE flank of Mt. Etna (Italy) and their possible origin. J. Volcanol. Geoth. Res. 115, 277–302. Voight, B., Elsworth, D., 1997. Failure of volcano slopes. Geotechnique 47, 1–31. Voight, B., Glicken, H., Janda, R.J., Douglass, P.M., 1981. Catastrophic rockslide avalanche of May 18. US Geol. Surv. Prof. Pap. 1250, 347–378. Walter, T.R., Acocella, V., Neri, M., Amelung, F., 2005. Feedback processes between magmatism and E-flank movement at Mt. Etna (Italy) during the 2002–2003 eruption. J. Geophys. Res. 110, B10205. doi:10.1029/2005JB003688. Wang, H.F., 2000. Theory of Linear Poroelasticity. Princeton University Press, Princeton. 276 pp. Zencher, F., Bonafede, M., Stefansson, R., 2006. Near-lithostatic pore pressure at seismogenic depths: a thermoporoelastic model. Geophys. J. Int. 166, 1318–1334.en
dc.description.obiettivoSpecifico3.2. Tettonica attivaen
dc.description.obiettivoSpecifico3.5. Geologia e storia dei vulcani ed evoluzione dei magmien
dc.description.obiettivoSpecifico3.6. Fisica del vulcanismoen
dc.description.obiettivoSpecifico4.3. TTC - Scenari di pericolosità vulcanicaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorBattaglia, M.en
dc.contributor.authorDi Bari, M.en
dc.contributor.authorAcocella, V.en
dc.contributor.authorNeri, M.en
dc.contributor.departmentDepartment of Earth Sciences, Sapienza, University of Rome, Italyen
dc.contributor.departmentDepartment of Geology and Geophysics, University of Bari, Italyen
dc.contributor.departmentDipartimento di Scienze Geologiche, Università Roma Tre, Roma, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversity of Rome “La Sapienza,” Department of Earth Sciences, Rome, Italy-
crisitem.author.deptDepartment of Geology and Geophysics, University of Bari, Italy-
crisitem.author.deptUniversità Roma Tre, Dipartimento di Scienze Geologiche, Rome, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.orcid0000-0003-4726-5287-
crisitem.author.orcid0000-0002-5890-3398-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2011 Battaglia et al JVGR 2011.pdfarticle1.24 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

15
checked on Feb 10, 2021

Page view(s) 50

234
checked on Apr 20, 2024

Download(s)

25
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric