Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7000
DC FieldValueLanguage
dc.contributor.authorallBemis, K.; Department of Earth and Planetary Science, Rutgers, The State University of New Jersey, Piscataway, NJ 08855, USAen
dc.contributor.authorallWalker, J.; Department of Geology and Environmental Geosciences, Northern Illinois University, DeKalb, IL 60115, USAen
dc.contributor.authorallBorgia, A.; Department of Earth and Planetary Science, Rutgers, The State University of New Jersey, Piscataway, NJ 08855, USAen
dc.contributor.authorallTurrin, B.; Department of Earth and Planetary Science, Rutgers, The State University of New Jersey, Piscataway, NJ 08855, USAen
dc.contributor.authorallNeri, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallSwisher III, C.; Department of Earth and Planetary Science, Rutgers, The State University of New Jersey, Piscataway, NJ 08855, USAen
dc.date.accessioned2011-05-20T07:32:44Zen
dc.date.available2011-05-20T07:32:44Zen
dc.date.issued2011-04-15en
dc.identifier.urihttp://hdl.handle.net/2122/7000en
dc.description.abstractMorphologic data for 147 cinder cones in southern Guatemala andwestern El Salvador are comparedwith data from the San Francisco volcanic field, Arizona (USA), Cima volcanic field, California (USA), Michoácan–Guanajuato volcanic field, Mexico, and the Lamongan volcanic field, East Java. The Guatemala cones have an average height of 110+/-50 m, an average basal diameter of 660+/-230 m and an average top diameter of 180+/-150 m. The generalmorphology of these cones can be described by their average cone angle of slope (24+/-7), average heightto- radius ratio (0.33+/-0.09) and their flatness (0.24+/-0.18). Although the mean values for the Guatemalan cones are similar to those for other volcanic fields (e.g., San Francisco volcanic field, Arizona; Cima volcanic field, California; Michoácan–Guanajuato volcanic field, Mexico; and Lamongan volcanic field, East Java), the range of morphologies encompasses almost all of those observed worldwide for cinder cones. Three new 40Ar/39Ar age dates are combined with 19 previously published dates for cones in Guatemala and El Salvador. There is no indication that the morphologies of these cones have changed over the last 500–1000 ka. Furthermore, a re-analysis of published data for other volcanic fields suggests that only in the Cima volcanic field (of those studied) is there clear evidence of degradation with age. Preliminary results of a numerical model of cinder cone growth are used to show that the range of morphologies observed in the Guatemalan cinder cones could all be primary, that is, due to processes occurring at the time of eruption.en
dc.description.sponsorshipSupport for Walker was provided by NSF MARGINS grant OCE- 0405666.en
dc.language.isoEnglishen
dc.publisher.nameElsevier B.V.en
dc.relation.ispartofJournal of Volcanology and Geothermal Researchen
dc.relation.ispartofseries/201(2011)en
dc.subjectcinder conesen
dc.subjectmorphologyen
dc.subjectage datingen
dc.titleThe growth and erosion of cinder cones in Guatemala and El Salvador: Models and statisticsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber39-52en
dc.subject.INGV04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.03. Geomorphologyen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.09. Structural geologyen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneousen
dc.subject.INGV05. General::05.02. Data dissemination::05.02.03. Volcanic eruptionsen
dc.identifier.doi10.1016/j.jvolgeores.2010.11.007en
dc.relation.referencesBemis, K. G., 1995. A morphometric study of volcanoes in Guatemala, Iceland, the Snake River Plain, and the South Pacific. Ph.D. Thesis, Rutgers University. Bemis, K.G., Bonar, D.E., 1997. Models of cinder cone growth: the effects of ballistic drag and grain flow. Abstract. Symposium on Localization Phenomena and Dynamics of Brittle and Granular Systems. Bemis, K., Borgia, A., Neri, M., 2008. Magma Supply Rates Inferred from Cinder Cone Radii. IAVCEI, Iceland. 2008 (abstract). Bemis, K., Borgia, A., and Neri, M., 2010. Magma supply rates inferred from cinder cone radii. Forthcoming. Bekncke, B., Neri, M., 2003. The July–August 2001 eruption of Mt. Etna (Sicily). Bulletin of Volcanology 65, 461–476. Burkhart, B., Self, S., 1985. Extension and rotation of crustal blocks in Northern Central America and effect of the volcanic arc. Geology 13, 22–26. Bloomfield, K., 1975. A late-Quaternary monogenetic volcano field in Central Mexico. Geologishce Rundschau 64, 476–497. Calvari, S., Pinkerton, H., 2004. Birth, growth and morphologic evolution of the ‘Laghetto’ cinder cone during the 2001 Etna eruption. Journal of Volcanology and Geothermal Research 132, 225–239. Carn, S.A., 2000. The Lamongan volcanic field, East Java, Indonesia: physical volcanology, historic activity, and hazards. Journal of Volcanology and Geothermal Research 95, 81–108. Carr, M.J., Stoiber, R.E., 1990. Volcanism. In: Dengo, G., Case, J.E. (Eds.), The geology of North America: The Caribbean region: Geol Soc Am H, pp. 375–391. DeMets, C., Gordon, R.G., Argus, D.F., Stein, S., 1990. Current plate motions. Geophysical Journal International 101, 425–478. Donnelly, T.W., Horne, G.S., Finch, R.C., Lopez-Ramos, E., 1990. Northern Central America; the Maya and Chortis Block. In: Dengo, G., Case, J.E. (Eds.), The geology of North America: The Caribbean region: Geol Soc Am H, pp. 37–75. Chouet, B., Hamisevicz, N., McGetchin, T.R., 1974. Photoballistics of volcanic jet activity at Stromboli, Italy. Journal of Geophysical Research 79, 4961–4976. Cohen, B., Bemis, K.G., 1998. Spontaneous stratification as a possible mechanism for the formation of reverse graded layering in cinder cones (abs.): EOS, Trans. AGU, Spring Meet. Suppl., Abstract T21B-06. Dohrenwend, J.C., Wells, S.G., Turrin, B.D., 1986. Degradation of Quaternary cinder cones in the Cima volcanic field, Mojave Desert, California. Geological Society of America Bulletin 97, 421–427. Favalli, M., Karatson, D., Mazzarini, F., Pareschi, M.T., Boschi, E., 2009. Morphometry of scoria cones located on a volcano flank: a case study from Mt. Etna (Italy), based on high-resolution LiDAR data. Journal of Volcanology and Geothermal Research 183, 320–330. Fedotov, S.A., Markhinin, Ye.K. (Eds.), 1983. The Great Tolbachik Fissure Eruption: Geological and Geophysical Data 1975–1976. Cambridge University Press, Cambridge, England. Fornaciai, A., Behncke, B., Favalli, M., Neri, M., Tarquini, S., Boschi, E., 2010. Detecting short-term evolution of Etnean cinder cones: a LIDAR-based approach. Bulletin of Volcanology. doi:10.1007/s00445-010-0394-3. Hasenaka, T., Carmichael, I.S.E., 1985a. The cinder cones of Michoacán–Guanajuato, Central Mexico: their age, volume and distribution, and magma discharge rate. Journal of Volcanology and Geothermal Research 25, 105–124. Hasenaka, T., Carmichael, I.S.E., 1985b. A compilation of location, size, and geomorphological parameters of volcanoes of the Michoacan–Guanajuato volcanic field, central Mexico. Geofisica Internacional 24–4, 577–607. Hooper, D. M., 1994. Geomorphologic modeling of the degradational evolution of cinder cones. PhD dissertation, State University of New York at Buffalo, Buffalo, NY, 312 pp. Hooper, D.M., Sheridan, M.F., 1998. Computer-simulation models of scoria cone degradation. Journal of Volcanology and Geothermal Research 83, 241–267. Kervyn, M., Ernst, G., Carracedo, J.-C., Jacobs, P., 2010. Geomorphology of “monogenetic” volcanic cones, submitted to Geomorphology. Luhr, J.F., Simkin, T. (Eds.), 1993. Paricutin, the Volcano Born in a Mexican Cornfield. Geoscience Press, Inc., Phoenix. 427 pp. McGetchin, T.R., Settle, M., Chouet, B.A., 1974. Cinder cone growth modeled after Northeast crater, Mount Etna, Sicily. Journal of Geophysical Research 79, 3257–3272. Porter, S.C., 1972. Distribution, morphology, and size distribution of cinder cones on Mauna Lea Volcano, Hawaii. Geological Society of America Bulletin 83, 3607–3612. Riedel, C., Ernst, G.G.J., Riley, M., 2003. Controls on the growth and geometry of pyroclastic constructs. Journal of Volcanology and Geothermal Research 127, 121–152. Settle, M., 1979. The structure and emplacement of cinder cone fields. American Journal of Science 279, 1089–1107. Smith, D.K., Cann, J.R., 1992. The role of seamount volcanism in crustal construction at the Mid-Atlantic Ridge (24°–30°N). Journal of Geophysical Research 97, 1645–1658. Turrin, B.D., Dohrenwend, J.C., Wells, S.G.,McFadden, L.D., 1984. Geochronology and eruptive history of the Cima volcanic field, easternMojave Desert, California: Geological Society of America 1984 Annual Meeting Guidebook, Reno, Nevada, field trip 14, 88–100. Turrin, B.D., Dohrenwend, J.C., Drake, R.E., Curtis, G.H., 1985. Potassium–argon ages from the Cima volcanic field, eastern Mojave Desert, California. IsochronWest 44, 9–16. Turrin, B.D., Donnelly-Nolan, J.M., Hearn, B.C., 1994. 40Ar/39Ar ages from the rhyolite of Alder Creek, California: age of the Cobb Mountain normal-polarity subchron revisited. Geology 22, 251–254. Turrin, B.D., Christiansen, R.L., Clynne, M.A., Champion, D.E., Gerstel, W.J., Muffler, L.J.P., Trimble, D.A., 1998. Age of Lassen Peak, California, and implications for the ages of late Pleistocene glaciations in the southern Cascade Range. Geol. Soc. Amer. Bull. 110, 931–945. Walker, J.A., Singer, B.S., Jicha, B.R., Cameron, B.I., Carr, M.J., Olney, J.L., 2011. Monogenetic, behind-the-front volcanism in southeastern Guatemala and western El Salvador: 40Ar/39Ar ages and tectonic implications. Lithos 123, 243–253. Williams, H., McBirney, A.R., Dengo, G., 1964. Geologic Reconnaissance of Southeastern Guatemala. University of California Press, Berkeley and Los Angeles. Wood, C. A., 1979. Morphometric studies of planetary landforms: impact craters and volcanoes. Ph.D. Thesis: Brown University. Wood, C.A., 1980a. Morphometric evolution of cinder cones. Journal of Volcanology and Geothermal Research 7, 387–413. Wood, C.A., 1980b. Morphometric analysis of cinder cone degradation. Journal of Volcanology and Geothermal Research 8, 137–160.en
dc.description.obiettivoSpecifico1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcanien
dc.description.obiettivoSpecifico3.5. Geologia e storia dei vulcani ed evoluzione dei magmien
dc.description.obiettivoSpecifico3.6. Fisica del vulcanismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorBemis, K.en
dc.contributor.authorWalker, J.en
dc.contributor.authorBorgia, A.en
dc.contributor.authorTurrin, B.en
dc.contributor.authorNeri, M.en
dc.contributor.authorSwisher III, Carlen
dc.contributor.departmentDepartment of Earth and Planetary Science, Rutgers, The State University of New Jersey, Piscataway, NJ 08855, USAen
dc.contributor.departmentDepartment of Geology and Environmental Geosciences, Northern Illinois University, DeKalb, IL 60115, USAen
dc.contributor.departmentDepartment of Earth and Planetary Science, Rutgers, The State University of New Jersey, Piscataway, NJ 08855, USAen
dc.contributor.departmentDepartment of Earth and Planetary Science, Rutgers, The State University of New Jersey, Piscataway, NJ 08855, USAen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentDepartment of Earth and Planetary Science, Rutgers, The State University of New Jersey, Piscataway, NJ 08855, USAen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDepartment of Earth and Planetary Science, Rutgers, The State University of New Jersey, Piscataway, NJ 08855, USA-
crisitem.author.deptDepartment of Geology and Environmental Geosciences, Northern Illinois University, DeKalb, IL 60115, USA-
crisitem.author.deptDepartment of Earth and Planetary Science, Rutgers, The State University of New Jersey, Piscataway, NJ 08855, USA-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptDepartment of Earth and Planetary Science, Rutgers, The State University of New Jersey, Piscataway, NJ 08855, USA-
crisitem.author.orcid0000-0003-2947-0009-
crisitem.author.orcid0000-0002-5890-3398-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
2011 Bemis et al JVGR 2011.pdfarticle2.4 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

19
checked on Feb 10, 2021

Page view(s) 50

222
checked on Apr 20, 2024

Download(s) 50

317
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric