Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6991
DC FieldValueLanguage
dc.contributor.authorallMolinari, Irene; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallKäser, Martin; Earth and Environmental Sciences, Ludwig-Maximilians-Universität, München, Germanyen
dc.contributor.authorallMorelli, Andrea; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.date.accessioned2011-05-10T13:02:11Zen
dc.date.available2011-05-10T13:02:11Zen
dc.date.issued2010-05en
dc.identifier.urihttp://hdl.handle.net/2122/6991en
dc.description.abstractImplementation of crustal structure challenges accuracy and efficiency of practical numerical solutions of the seismic wave equation. Extremely varying thickness of sedimentary layers and depth of Moho discontinuity create the need for finding viable compromises between speed and precision. We present a study of the influence of different numerical representations of crustal structure on synthetic seismograms. We focus our attention on the European continental scale and consider realistic models for the crust based on a new, comprehensive compilation of currently available information from diverse sources, ranging from seismic prospection to receiver function studies. We investigate different renditions of the Earth structure comparing two approaches: (i) computational meshes honoring the (laterally-varying) geometry of interfaces for a layered crust, and (ii) meshes smoothing out discontinuities of the crustal model within computational elements. The second approach results in computationally more efficient meshes, at the expense of some accuracy in the delineation of the structure, that is however known with some approximation. We compare seismograms, computed using different model discretization accuracies along 2D cross sections, to reference solutions derived from the most accurate structural representation. For the required seismic wave propagation simulations we use the Discontinuous Galerkin Finite Element Method (ADER-DG) providing high-order accuracy in space and time on unstructured meshes. With this approach strong and undulating discontinuities can be considered by the element interfaces and modifications of the geometrical properties can be carried out rapidly due to an external mesh generation process. We analyze the results of the different meshing strategies with respect to accuracy and computational effort. The analysis is based on time-frequency error measures of amplitude and phase misfits and aims at a clear definition of limits in the discretization approach of the crustal structure at the continental scale. Our results are crucial for the creation of computationally more demanding 3D tetrahedral meshes of the model of the European crust in order to understand how much structural detail has actually to be resolved to get sufficiently accurate synthetic data sets in a desired frequency band as this is essential to validate crustal models by comparisons to real seismic observations.en
dc.language.isoEnglishen
dc.publisher.nameEGU General Assemblyen
dc.relation.ispartofEuropean Geoscience Unionen
dc.subjectcrusten
dc.subjectwave propagationen
dc.subjectADER-DGen
dc.subjectmisfiten
dc.titleAnalysis of different discrete representations of the European crust for numerical wave propagation simulationsen
dc.typePoster sessionen
dc.description.statusPublisheden
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysisen
dc.description.ConferenceLocationVienna, Austriaen
dc.description.obiettivoSpecifico3.1. Fisica dei terremotien
dc.description.fulltextrestricteden
dc.contributor.authorMolinari, Ireneen
dc.contributor.authorKäser, Martinen
dc.contributor.authorMorelli, Andreaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentEarth and Environmental Sciences, Ludwig-Maximilians-Universität, München, Germanyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
item.openairetypePoster session-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptEarth and Environmental Sciences, Ludwig-Maximilians-Universität, München, Germany-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.orcid0000-0002-8314-1444-
crisitem.author.orcid0000-0002-7400-8676-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Conference materials
Files in This Item:
File Description SizeFormat Existing users please Login
Molinari_ADER_EGU2010.pdfPoster10.89 MBAdobe PDF
Show simple item record

Page view(s)

142
checked on Apr 17, 2024

Download(s)

26
checked on Apr 17, 2024

Google ScholarTM

Check