Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6913
DC FieldValueLanguage
dc.contributor.authorallSagnotti, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallSmedile, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallDe Martini, P. M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallPantosti, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallSperanza, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallWinkler, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallDel Carlo, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Via della Faggiola 32, 56126 Pisa, Italyen
dc.contributor.authorallBellucci, L. G.; Istituto di Scienze Marine, CNR, Sede di Bologna – Geologia Marina, Via P. Gobetti 101, 40129 Bologna, Italyen
dc.contributor.authorallGasperini, L.; Istituto di Scienze Marine, CNR, Sede di Bologna – Geologia Marina, Via P. Gobetti 101, 40129 Bologna, Italyen
dc.date.accessioned2011-01-26T10:24:09Zen
dc.date.available2011-01-26T10:24:09Zen
dc.date.issued2011-01en
dc.identifier.urihttp://hdl.handle.net/2122/6913en
dc.description.abstractWe present a high-resolution palaeomagnetic and rock magnetic study of two cores, MS06 and MS06-SW (6.7 and 1.1 m long, respectively), collected at 72 m below sea level in the Augusta Bay shelf (Eastern Sicily, Ionian Sea, Italy) about 2.3 kmfrom the coastline. Geophysical surveying carried out in the sampling area highlighted the presence of a homogeneous sedimentary sequence that most likely was deposited after the Last Glacial Maximum and was not affected by anthropogenic disturbances. The two cores penetrated a monotonous mud sedimentary sequence, interrupted at ∼3 m depth by a 3–4-cm-thick volcanic sandy layer that is correlated with the tephra fallout deposit produced by the 122 BC plinian eruption of Mt Etna. This tephra, along with radiocarbon dating of nine marine shells and with radioactive tracers for the uppermost 0.3 m (210Pb and 137Cs), provide the chronological constraints for the stratigraphic sequence that resulted younger than 4500 yr BP. Palaeomagnetic and rock magnetic data show that the sample sequence is magnetically homogeneous. A single peak of high magnetic mineral concentration is present and corresponds to the volcanic sandy layer. Palaeomagnetic data allowed the identification of a well-defined characteristic remanent magnetization that provides a high-resolution record of palaeosecular variation (PSV) at the sampling site. The reconstructed PSV curve is in good agreement with the available regional reference PSV curves and with the prediction from recent PSV modelling for Europe. The palaeomagnetic data obtained in this study on the one hand support and refine the age model for the cores, derived from other independent constraints, and on the other hand provide an original high-resolution PSV curve that can serve as a reference for the central Mediterranean over the last 4 ka.en
dc.language.isoEnglishen
dc.publisher.nameWiley-Blackwellen
dc.relation.ispartofGeophysical Journal Internationalen
dc.relation.ispartofseries1 / 184 (2011)en
dc.relation.isversionofhttp://hdl.handle.net/2122/6378en
dc.subjectPalaeointensityen
dc.subjectPalaeomagnetic secular variationen
dc.subjectMarine magnetics and palaeomagneticsen
dc.subjectEuropeen
dc.titleA continuous palaeosecular variation record of the last four millennia from the Augusta Bay (Sicily, Italy)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber191 - 202en
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.02. Geomagnetic field variations and reversalsen
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetismen
dc.identifier.doi10.1111/j.1365-246X.2010.04860.xen
dc.relation.referencesAnson, G.L. & Kodama K.P., 1987. Compaction-induced shallowing of the post-depositional remanent magnetization in a synthetic sediment, Geophys. J. R. astr. Soc., 88, 7–23. Barletta, F., St-Onge, G., Stoner, J.S., Lajeunesse, P. & Locat, J., 2010. A high-resolution Holocene paleomagnetic secular variation and relative paleointensity stack from eastern Canada, Earth planet. Sci. Lett., 298, 162–174. Bellucci, L.G., Frignani, M., Cochran, J.K., Albertazzi, S., Zaggia, L., Cecconi, G. & Hopkins, H., 2007. 210Pb and 137Cs as chronometers for salt marsh accretion in the Venice Lagoon: links to flooding frequency and climate change, J. Environ. Radioact., 97, 85–102. Bleil, U. & von Dobeneck, T., 1999. Geomagnetic events and relative paleointensity records: clues to high-resolution paleomagnetic chronostratigraphies of Late Quaternary marine sediments?, in Use of Proxies in Paleoceanography: Examples from the South Atlantic, pp. 635–654, eds Fischer G. & Wefer G., Springer, New York. Blow, R.A. & Hamilton, N., 1978. Effect of compaction on the acquisition of a detrital remanent magnetization in fine-grained sediments, Geophys. J. R. astr. Soc., 52, 13–23. Bloxham, J. & Gubbins, D., 1985. The secular variation of Earth’s magnetic field, Nature, 317, 777–781. Bloxham, J. & Jackson, A., 1992. Time-dependent mapping of the magnetic field at the core-mantle boundary, J. geophys. Res., 97, 19 537–19 563. Chadima, M. & Hrouda, F., 2006. Remasoft 3.0–a user-friendly paleomagnetic data browser and analyzer, Travaux G´eophysiques, XXVII, 20–21. Coltelli, M., Del Carlo, P. & Vezzoli, L. 1998. The discovery of a Plinian basaltic eruption of Roman age at Mt. Etna, Geology, 26, 1095–1098. Dal Forno, G. & Gasperini, L., 2008. ChirCor: a new tool for generating synthetic chirp-sonar seismograms, Comput. Geosci., 34, 103–114. De Martini, P.M., Barbano, M.S., Smedile, A., Gerardi, F., Pantosti, D., Del Carlo, P. & Pirrotta, C., 2010. A unique 4000 year long geological record of multiple tsunami inundations in the Augusta Bay (eastern Sicily, Italy), Marine Geol., 276, 42–57. Donadini, F., Korte, M. & Constable, C.G., 2009. Geomagnetic field for 0–3 ka: 1. New data sets for revised global models, Geochem. Geophys. Geosyst., 10, Q06007, doi:10.1029/2008GC002295. Frank, U., Nowaczyk, N.R., Negendank, J.F.W. & Melles, M., 2002. A paleomagnetic record from Lake Lama, Northern Central Siberia, Phys. Earth planet. Int., 133, 3–20. Gasperini, L. & Stanghellini, G., 2009. SEISPRHO: an interactive computer program for processing and interpretation of high-resolution seismic reflection profiles, Comput. Geosci., 35, 1497–507. Hagstrum, J.T. & Champion, D.E., 2002. A Holocene paleosecular variation record from 14C-dated volcanic rocks in western North America, J. geophys. Res., 107(B1), 2025, doi:10.1029/2001JB000524. Haltia-Hovi, E., Nowaczyk, N. & Saarinen, T., 2010. Holocene palaeomagnetic secular variation recorded in multiple lake sediments cores from eastern Finland, Geophys. J. Int., 180, 609–622. Holme, R. & Olsen, N., 2006. Core surface flow modelling from highresolution secular variation, Geophys. J. Int., 166, 518–528. Hyodo, M., 1984. Possibility of reconstruction of the past geomagnetic field from homogeneous sediments, J. Geomagn. Geoelectr., 36, 45–62. Iorio, M., Sagnotti, L., Angelino, A., Budillon, F., D’Argenio, B., Dinar`es- Turell, J., Macr`ı, P., & Marsella, E., 2004. High resolution petrophysical and palaeomagnetic study of Late Holocene Shelf Sediments, Salerno Gulf, Tyrrhenian Sea, Holocene, 14, 417–425. Jackson, A., Jonkers, R.T. &Walker,M.R., 2000. Four centuries of geomagnetic secular variation from historical records, Phil. Trans. R. Soc. Lond. A, 358, 957–990. King, R.F., 1955. The remanent magnetism of artificially deposited sediments, Mon. Not. R. astr. Soc., 7, 115–134. King, J.W., Banerjee, S.K., Marvin, J.A.&O¨ zdemir, O¨ ., 1982.Acomparison of different magnetic methods for determining the relative grain size of magnetite in natural materials: some results from lake sediments, Earth planet. Sci. Lett., 59, 404–419. Kirschvink, J.L., 1980. The least-squares line and plane and the analysis of paleomagnetic data, Geophys. J. R. astr. Soc., 62, 699–718. Knudsen, M.F., Riisager, P., Donadini, F., Snowball, I., Muscheler, R., Korhonen, K. & Pesonen, L.J., 2008. Variations in the geomagnetic dipole moment during the Holocene and the past 50 kyr, Earth planet. Sci. Lett., 272, 319–329. Korte, M., & Constable C.G., 2005. Continuous geomagnetic field models for the past 7 millennia: 2. CALS7K, Geochem. Geophys. Geosyst., 6, Q02H16, doi:10.1029/2004GC000801. Korte, M., Donadini, F. & Constable, C.G., 2009. Geomagnetic field for 0–3 ka: 2. A new series of time-varying global models, Geochem. Geophys. Geosyst., 10, Q06008, doi:10.1029/2008GC002297. Kristj´ansd´ottir, G.B., Stoner, J.S., Jennings, A.E., Andrews, J.T.&Gr¨onvold, K., 2007. Geochemistry of Holocene cryptotephras from the North Iceland Shelf (MD99–2269): intercalibration with radiocarbon and palaeomagnetic chronostratigraphies, Holocene, 17, 155–176. Leslie, B.W., Lund, S.P. & Hammond, D.E., 1990a. Rock magnetic evidence for the dissolution and authigenic growth of magnetic minerals within anoxic marine sediments of the California continental borderland, J. geophys. Res., 95, 4437–4452. Leslie, B.W., Hammond, D.E., Berelson, W.M. & Lund, S.P., 1990b. Diagenesis in anoxic sediments from the California continental boreland and its influence on Iron, Sulfur, and Magnetite behavior, J. geophys. Res., 95, 4453–4470. Lund, S., 2007. Paleomagnetic secular variation, in Encyclopedia of Geomagnetism and Paleomagnetism, pp. 766–776, eds Gubbins, D. & Herrero-Bervera, E., Springer, Dordrecht. Magagnoli, A. & Mengoli, M., 1999. Un brevetto CNR per la campionatura dei fondali marini, Ricerca & Futuro, 14, 67–68 (http://www.area.fi.cnr.it/r&f/n14/magnoli.htm) Maher, B., 1988. Magnetic properties of some synthetic submicron magnetites, Geophys. J., 94, 83–86. Mitra, R. & Tauxe, L., 2009. Full vector model for magnetization in sediments, Earth planet. Sci. Lett., 286, 535–545. Nilsson, A., Snowball, I.,Muscheler, R. & Uvo, C. B., 2010, Holocene geocentric dipole tilt model constrained by sedimentary paleomagnetic data, Geochem. Geophys. Geosyst., 11, Q08018, doi:10.1029/2010GC003118. Noel, M. & Batt, C.M., 1990. A method for correcting geographically separated remanence directions for the purpose of archeomagnetic dating, Geophys. J. Int., 102, 753–756. Pav´on-Carrasco, F. J., Osete, M.L., Torta, J.M. & Gaya-Piqu´e, L.R., 2009. A regional archeomagnetic model for Europe for the last 3000 years, SCHA.DIF.3K: applications to archeomagnetic dating, Geochem. Geophys. Geosyst., 10, Q03013, doi:10.1029/2008GC002244. Ramsey, B.C., 2009. Bayesian analysis of radiocarbon dates, Radiocarbon, 51(1), 337–360. Reimer, P.J. & Reimer, R.W., 2001. A marine reservoir correction database and on-line interface, Radiocarbon, 43, 461–463. [suppl. mat.URL:http://www.calib.org)]. Reimer, P.J. et al., 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP, Radiocarbon, 51(4), 1111–1150. Roberts, A.P., 2006. High-resolution magnetic analysis of sediment cores: strengths, limitations and strategies for maximizing the value of long-core magnetic data, Phys. Earth planet. Int., 156, 162– 178. Roberts, A.P. & Winklhofer, M., 2004. Why are geomagnetic excursions not always recorded in sediments? Constraints from post-depositional remanent magnetization lock-in modelling, Earth planet. Sci. Lett., 227, 345–359. Rolph, T.C. & Shaw, J., 1986. Variations of the geomagnetic field in Sicily, J. Geomagn. Geoelectr., 38, 1269–1277. Rolph, T.C., Vigliotti, L. & Oldfield, F., 2004. Mineral magnetism and geomagnetic secular variation of marine and lacustrine sediments from central Italy: timing and nature of local and regional Holocene environmental change, Quat. Sci. Rev., 23, 1699–1722. Sagnotti, L., Budillon, F., Dinar`es-Turell, J., Iorio, M. & Macr`ı, P., 2005. Evidence for a variable paleomagnetic lock-in depth in the Holocene sequence from the Salerno Gulf (Italy): implications for ‘high-resolution’ paleomagnetic dating, Geochem. Geophys. Geosyst., 6, Q11013, doi:10.1029/2005GC001043. Smedile, A. et al., 2010. Possible tsunami signatures from an integrated study in the Augusta Bay offshore (Eastern Sicily – Italy), Mar. Geol., submitted. Snowball, I., Zill´en, L., Ojala, A., Saarinen, T. & Sandgren, P., 2007. FENNOSTACK and FENNORPIS: varve dated Holocene paleomagnetic secular variation and relative palaeointensity stacks for Fennoscandia, Earth planet. Sci. Lett., 255, 106–116. Speranza, F., Pompilio, M. & Sagnotti, L., 2004. Paleomagnetism of spatter lavas from Stromboli volcano (Aeolian Islands, Italy): implications for the age of paroxysmal eruptions, Geophys. Res. Lett., 31, doi: 10.1029/2003GL018944, 2004. Speranza, F., Branca, S., Coltelli, M., D’Ajello Caracciolo, F. & Vigliotti, L., 2006. How accurate is ‘‘paleomagnetic dating’’? New evidence from historical lavas from Mount Etna, J. geophys. Res., 111, B12S33, doi:10.1029/2006JB004496. Speranza, F., Pompilio, M., D’Ajello Caracciolo, F. & Sagnotti, L., 2008. Holocene eruptive history of the Stromboli volcano: constraints from paleomagnetic dating, J. geophys. Res., 113, B09101, doi:10.1029/2007JB005139. St-Onge, G., Stoner, J.S. & Hillaire-Marcel, C., 2003. Holocene paleomagnetic records from the St. Lawrence Estuary, eastern Canada: centennial to millennial-scale geomagnetic modulation of cosmogenic isotopes, Earth planet. Sci. Lett., 209, 113–130. Tanguy, J.-C., Bucur, I. & Thompson J.F.C., 1985. Geomagnetic secular variation in Sicily and revised ages of historic lavas from Mount Etna, Nature, 318, 453–455. Thompson, R. & Barraclough, D.R., 1982. Geomagnetic secular variation based on Spherical Harmonic and Cross Validation analyses of historical and archaeomagnetic data, J. Geomagn. Geoelectr., 34, 245– 263. Turner, G.M. & Thompson, R., 1981. Lake sediment record of the geomagnetic secular variation in Britain during Holocene times, Geophys. J., 65, 703–725. Turner, G.M. & Thompson, R., 1982. Detransformation of the British geomagnetic secular variation record for Holocene times, Geophys. J., 70, 789–792. Verosub, K.L., 1977. Depositional and postdepositional processes in the magnetization of sediments, Rev. Geophys., 15, 129–143. Verosub, K.L., 2000. Paleomagnetic dating, in Quaternary Geochonology: Methods and Applications, pp. 339–356, eds Noller, J., Sower, J. & Lettis, W.R., AGU Reference Shelf 4, Washington, D.C. Vigliotti, L., 2006. Secular variation record of the Earth’s magnetic field in Italy during the Holocene: constraints for the construction of a master curve, Geophys. J. Int., 165, 414–429. Yang, S., Odah, H. & Shaw, J., 2000. Variations in the geomagnetic dipole moment of the last 12 000 years, Geophys. J. Int., 140, 158–162. Zijderveld, J.D.A., 1967. A. C. demagnetization of rocks: analysis of results, in Methods in Palaeomagnetism, pp. 254–286, eds Collinson,D.W., Creer, K.M. & Runcorn, S.K., Elsevier, Amsterdam.en
dc.description.obiettivoSpecifico2.2. Laboratorio di paleomagnetismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.contributor.authorSagnotti, L.en
dc.contributor.authorSmedile, A.en
dc.contributor.authorDe Martini, P. M.en
dc.contributor.authorPantosti, D.en
dc.contributor.authorSperanza, F.en
dc.contributor.authorWinkler, A.en
dc.contributor.authorDel Carlo, P.en
dc.contributor.authorBellucci, L. G.en
dc.contributor.authorGasperini, L.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Via della Faggiola 32, 56126 Pisa, Italyen
dc.contributor.departmentIstituto di Scienze Marine, CNR, Sede di Bologna – Geologia Marina, Via P. Gobetti 101, 40129 Bologna, Italyen
dc.contributor.departmentIstituto di Scienze Marine, CNR, Sede di Bologna – Geologia Marina, Via P. Gobetti 101, 40129 Bologna, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptIstituto di Scienze Marine, CNR, Sede di Bologna – Geologia Marina, Via P. Gobetti 101, 40129 Bologna, Italy-
crisitem.author.deptISMAR-CNR - Istituto di Scienze Marine-CNR, Bologna, Italy-
crisitem.author.orcid0000-0003-3944-201X-
crisitem.author.orcid0000-0002-2938-4816-
crisitem.author.orcid0000-0002-3598-5191-
crisitem.author.orcid0000-0001-7308-9104-
crisitem.author.orcid0000-0001-5492-8670-
crisitem.author.orcid0000-0002-0653-0059-
crisitem.author.orcid0000-0001-5506-4579-
crisitem.author.orcid0000-0003-2133-4379-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Article.pdf1.18 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

11
checked on Feb 10, 2021

Page view(s) 10

420
checked on Apr 24, 2024

Download(s)

56
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric