Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6905
DC FieldValueLanguage
dc.contributor.authorallFaccenna, C.; Univ Roma TRE, Dip Sci Geol, Rome, Italyen
dc.contributor.authorallBecker, T. W.; Univ Calif Los Angeles, Dept Earth Sci, Los Angeles, CA USAen
dc.contributor.authorallLallemand, S.; Univ Montpellier 2, CNRS, Lab Geosci Montpellier, F-34095 Montpellier 5, Franceen
dc.contributor.authorallLagabrielle, Y.; Univ Montpellier 2, CNRS, Lab Geosci Montpellier, F-34095 Montpellier 5, Franceen
dc.contributor.authorallFuniciello, F.; Univ Roma TRE, Dip Sci Geol, Rome, Italyen
dc.contributor.authorallPiromallo, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2011-01-25T06:56:44Zen
dc.date.available2011-01-25T06:56:44Zen
dc.date.issued2010-09-20en
dc.identifier.urihttp://hdl.handle.net/2122/6905en
dc.description.abstractA variety of atypical plume-like structures and focused upwellings that are not rooted in the lower mantle have recently been discussed, and seismological imaging has shown ubiquitous small-scale convection in the uppermost mantle in regions such as the Mediterranean region, the western US, and around the western Pacific. We argue that the three-dimensional return flow and slab fragmentation associated with complex oceanic subduction trajectories within the upper mantle can generate focused upwellings and that these may play a significant role in regional tectonics. The testable surface expressions of this process are the outsidearc alkaline volcanism, topographic swell, and low-velocity seismic anomalies associated with partial melt. Using three-dimensional, simplified numerical subduction models, we show that focused upwellings can be generated both ahead of the slab in the back-arc region (though ~five times further inward from the trench than arc-volcanism) and around the lateral edges of the slab (in the order of 100 km away from slab edges). Vertical mass transport, and by inference the associated decompression melting, in these regions appears strongly correlated with the interplay between relative trench motion and subduction velocities. The upward flux of material from the depths is expected to be most pronounced during the first phase of slab descent into the upper mantle or during slab fragmentation. We discuss representative case histories from the Pacific and the Mediterranean where we find possible evidence for such slab-related volcanism.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofEarth and Planetary Science Lettersen
dc.relation.ispartofseries/299(2010)en
dc.subjectsubductionen
dc.subjectmagmatismen
dc.subjectupper mantle convectionen
dc.subjectgeodynamic modelingen
dc.titleSubduction-triggered magmatic pulses: A new class of plumes?en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber54-68en
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamicsen
dc.identifier.doi10.1016/j.epsl.2010.08.012en
dc.relation.referencesAbers, G.A., Plank, T.,Hacker,B.R., 2003. ThewetNicaraguanslab. Geophys. Res. Lett. 30 (2), 1098. doi:10.1029/2002GL015649. An, M., Feng, M., Zhao, Y., 2009. Destruction of lithosphere within the north China craton inferred from surface wave tomography. Geochem. Geophys. Geosyst. 10, Q08016. doi:10.1029/2009GC002562. Auzende, J.M., Eissen, J.P., Lafoy, Y., Gente, P., Charlou, J.L., 1988. Seafloor spreading in the North Fiji Basin (Southwest Pacific). Tectonophysics 146, 317–351. Auzende, J.M., Pelletier, B., Eissen, J.P., 1995. The North Fiji Basin: geology, structure and geodynamic evolution. In: Taylor, B. (Ed.), Back-arc Basin: Tectonics and Magmatism. Plenum Press, New York, pp. 139–175. Auzende, J.M., Pelletier, B., Lafoy, Y., 1994. Twin active spreading ridges in the North Fiji Basin (S.W. Pacific). Geology 22, 63–66. Barruol, G., Deschamps, A., Coutant, O., 2004. Mapping Upper mantle anisotropy beneath SE France by SKS splitting: evidence for a Neogene asthenospheric flow induced by the Apulian slab rollback and deflected by the deep Alpine roots. Tectonophysics 394, 125–138.Becker, T.W., Faccenna, C., O'Connell, R.J., Giardini, D., 1999. The development of slabs in the upper mantle: insight from numerical and laboratory experiments. J. Geophys. Res. 104, 15207–15225. Bevis, M., Taylor, F.W., Schutz, B.E., Recy, J., Isacks, B.L., Helu, S., Singh, R., Kendrick, E., Stowell, J., Taylor, B., Calmant, S., 1995. Geodetic observations of very rapid convergence and back-arc extension at the Tonga Arc. Nature 374, 249–251. Burdick, S., Li, C., Martynov, V., Cox, T., Eakins, J., Mulder, T., Astiz, L., Vernon, F.L., Pavlis, G.L., van der Hilst, R.D., 2008. Upper mantle heterogeneity beneath North America from travel time tomography with global and USArra Transportable Array data. Seismological Res. Lett. 79, 384–392. Burrus, J., 1984. Contribution to a geodynamic synthesis of the Provencal basin (northwestern Mediterranean). Mar. Geol. 55, 247–269. Buttles, J., Olson, P., 1998. A laboratory model of subduction zone anisotropy. Earth Planet. Sci. Lett. 164, 245–262. Camp, V.E., Ross, M.E., 2004. Mantle dynamics and genesis of mafic magmatism in the intermontane Pacific Northwest. J. Geophys. Res. 109, B08204. doi:10.1029/ 2003JB002838. Cebria, J.M., Wilson, M., 1995. Cenozoic mafic magmatism in Western/Central Europe: a common European astenospheric reservoir. Terra Nova 7 162 abstract Suppl. Chen, J.C., 1973. Geochemistry of basalts from Penghu islands. Proc. Geol. Soc. China 16, 23–26. Chen, Y., Zhang, Y., Graham, D., Su, S., Deng, J., 2007. Geochemistry of Cenozoic basalts and mantle xenoliths in Northeast China. Lithos 96, 108–126. Cherchi, A., Montandert, L., 1982. Oligo-Miocene rift of Sardinia and the early history of the western Mediterranean basin. Nature 298, 736–739. Christensen, U.R., 1996. The influence of trench migration on slab penetration into the lower mantle. Earth Planet Sci. Lett. 140, 27–39. Christiansen, R.L., Foulger, G.R., Evans, J.R., 2002. Upper-mantle origin of the Yellowstone hotspot. Geol. Soc. Amer. Bull. 114, 1245–1256. Conder, J., Douglas, A.,Wiens, A., Morris, J., 2002. On the decompressionmelting structure at volcanic arcs and back-arc spreading centers. Geophys. Res. Lett. 29 (15), 1727. doi:10.1029/2002GL015390. Courtillot, V., Davaille, A., Besse, J., Stock, J., 2003. Three distinct types of hotspots in the Earth's mantle. Earth Planet. Sci. Lett. 205, 295–308. Currie, C.A., Hyndman, R.D., 2006. The thermal structure of subduction zone back arcs. J. Geophys. Res. 111, B08404. doi:10.1029/ 2005JB004024. Davaille, A., Lees, M.J., 2004. Thermal modeling of subducted plates: tear and hotspot at the Kamchatka corner. Earth Planet. Sci. Lett. 226, 293. doi:10.1016/j. epsl.2004.07.024. Davies, H.J., Bunge, H.P., 2006. Are splash plumes the origin of minor hotspots? Geology 34 (5), 349–352. doi:10.1130/G22193.1. de Ignacio, C., Lopez, I., Oyarzun, R., Marquez, A., 2001. The Northern Patagonia Somuncura plateau basalts: a product of slab-induced, shallow asthenospheric upwelling? Terra Nova 13 (117–121), 2001. Deschamps, A., Lallemand, S., 2002. The West Philippine Basin : an Eocene to Early Oligocene back-arc basin opened between two opposed subduction zones. J. Geophys. Res. 107 (B12), 2322. doi:10.1029/2001JB001706. Di Giuseppe, E., van Hunen, J., Funiciello, F., Faccenna, C., Giardini, D., 2008. Slab Stiffness control of trench motion: insights from numerical models. Geochemistry Geophysics Geosystems 9, Q02014. Duggen, S., Hoernle, K., van den Bogaard, P., Rupke, L., Morgan, J.P., 2003. Deep roots of the Messinian salinity crisis. Nature 422, 602–606. Enns, A., Becker, T.W., Schmeling, H., 2005. The dynamics of subduction and trench migration for viscosity stratification. Geophys. J. Int. 160, 761–775. Faccenna, C., Becker, T.W., 2010. Shaping mobile belt from small scale convection. Nature 465. doi:10.1038/nature09064. Faccenna, C., Funiciello, F., Giardini, D., Lucente, P., 2001. Episodic back-arc extension during restricted mantle convection in the Central Mediterranean. Earth Planet. Sci. Lett. 187, 105–116. Faccenna, C., Jolivet, L., Piromallo, C., Morelli, A., 2003. Subduction and the depth of convection in the Mediterranean mantle. J. Geophys. Res. 108 (B2), 2099. doi:10.1029/2001JB001690. Faccenna, C., Civetta, L., D'Antonio, M., Funiciello, F., Margheriti, L., Piromallo, C., 2005. Constraints on mantle circulation around the deforming Calabrian slab. Geophys. Res. Lett. 32, L06311. doi:10.1029/2004GL021874. Faccenna, C., Piromallo, C., Crespo-Blanc, A., Jolivet, L., Rossetti, F., 2004. Lateral slab deformation and the origin of the western Mediterranean arcs. Tectonics 23, TC1012. doi:10.1029/2002TC001488. Falvey, D.A., 1975. Arc reversals, and a tectonic model for the North Fiji Basin. Austr. Soc. of Explor. Geophys. Bull. 6, 47–49. Ferranti, L., et al., 2006. Markers of the last interglacial sea level highstand along the coast of Italy: tectonic implications.Quat. Int. 145–146, 30–54. doi:10.1016/j.quaint.2005.07.009. Fischer, K.M., Parmentier, E.M., Stine, A.R., Wolf, E.R., 2000. Modeling anisotropy and plate-driven flow in the Tonga subduction zone back arc. J. Geophys. Res. 105 (B7), 16,181–16,191. doi:10.1029/1999JB900441. Fujioka, K., Okino, K., Kanamatsu, T., Ohara, Y., Ishizuka, O., Haraguchi, S., Ishii, T., 1999. Enigmatic extinct spreading center in the West Philippine back-arc basin unveiled. Geology 27 (12), 1135–1138. Funiciello, F., Faccenna, C., Giardini, D., 2004. Flow in the evolution of subduction system: insights from 3-D laboratory experiments. Geophys. J. Int. 15, 1393–1407. Funiciello, F., Faccenna, C., Giardini, D., Regenauer-Lieb, K., 2003. Dynamics of retreating slabs (part 2): insights from 3D laboratory experiments. J. Geophys. Res. 108. doi:10.1029/ 2001JB000896. Funiciello, F., Moroni, M., Piromallo, C., Faccenna, C., Cenedese, A., Bui, H.A., 2006. Mapping flow during retreating subduction: laboratory models analyzed by feature tracking. J. Geophys. Res 111. doi:10.1029/2005JB003792. Fyfe, W.S., 1997. Deep fluids and volatile recycling: crust to mantle. Tectonophysics 275, 243–251. doi:10.1016/S0040-1951(97)00023-1. Garel, E., Lagabrielle, Y., Pelletier, B., 2003. Abrupt axial variations along the slow to ultraslow spreading centers of the northern North Fiji Basin (SW Pacific): evidence for short wave heterogeneities in a back-arc mantle. Marine Geophys. Res. 24, 245–263. Garfunkel, Z., Anderson, C.A., Schubert, G., 1986. Mantle circulation and the lateral migration of subducted slabs. J Geophys. Res. 91, 7205–7223. Geist, D., Richards, M., 1993. Origin of the Columbia Plateau and Snake River plaindeflection of the Yellowstone plume. Geology 21, 789–792. Goes, S., Spakman, W., Bijwaard, H., 1999. A lower mantle source for central European volcanism. Science 286, 1928–1931. Gorbatov, A., Widiyantoro, S., Fukao, Y., Gordeev, E., 2000. Signature of remnant slabs in the North Pacific from P-wave tomography. Geophys. J. Int. 142, 27–46. Gordon, R.G., Jurdy, D.M., 1986. Cenozoic global platemotions. J.Geophys. Res. 91 (12389), 12406. Gorini, C., Mauffret, A., Guennoc, P., Le Marrec, A., 1994. Structure of the Gulf of Lions (Northwest mediterranean Sea): a review. In: Mascle, A. (Ed.), Hydrocarbon and Petroleum Geology of France, Eur. Assoc. Petrol. Geol, pp. 223–243. Granet, M., Wilson, M., Achauer, U., 1995. Imaging a mantle plume beneath the Massif Central (France). Earth Planet. Sci. Lett. 136, 281–296. Greenough, J.D., Fryer, B.J., 2008. Trace-element evidence for volatile-influence differentiation in a flow of alkali basalts. Peng Hu islands, Taiwan, Mineral. Assoc. Canada 46 (2), 305–315. Gvirtzman, Z., Nur, A., 1999. The formation of Mount Etna as the consequence of slab rollback. Nature 401 (6755), 782–785. Hager, B.H., Clayton, R.W., 1989. Constraints on the structure of mantle convection using seismic observations, flow models, and the geoid. In: Peltier, W.R. (Ed.), Mantle convection: Plate tectonics and global dynamics. The Fluid Mechanics of Astrophysics and Geophysics, 4. Gordon and Breach Science Publishers, New York, NY, pp. 657–763. Hall, R., 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific; computer-based reconstructions, model and animations. J. Asian Earth Sci. 20, 353–431. Hall, R., Spakman, W., 2002. Subducted slabs beneath the eastern Indonesia–Tonga region; insights from tomography. Earth Planet. Sci. Lett. 201, 321–336. Hammond, W., Humpreys, E.D., 2000. Upper mantle seismic wave velocity: effect of realistic partial melt geometries. J. Geophys. Res. 105, 10975–10986. Harangi, S., Tonarini, S., Vaselli, O., Manetti, P., 2003. Geochemistry and petrogenesis of Early Cretaceous alkaline igneous rocks in Central Europe: implications for a longlived EAR-type mantle component beneath Europe. Acta Geol. Hung. 46, 77–94. Harta, S.R., Coetzeeb, M., Workmana, R.K., Blusztajna, J., Sintonc, J.M., Steinberger, B., Hawkinse, J.W., 2004. Genesis of the Western Samoa seamount province: geochemical fingerprint and tectonics. Earth Planet. Sci. Lett. 227, 37–56. Hawkins, J.W., Natland, J.H., 1975. Nephelinites and basanites of the Samoan linear volcanic chain: their possible tectonic significance. Earth Planet. Sci. Lett. 24, 427–439. Hickey-Vargas, R., 1998. Geochemical characteristics of oceanic island basalts from the Philippine Sea Plate: implications for thye sources of east Asian Plate margin and intraplate basalts. In: Flower, M.F.J., et al. (Ed.), Mantle Dynamics and Plate Interactions in east Asia; Geodyn. Ser, 27. AGU, Washington DC, pp. 365–384. Hilde, T.W.C., Lee, C.S., 1984. Origin and evolution of the West Philippine Basin: a new interpretation. Tectonophysics 102, 85–104. Hoernle, K., Zhang, Y.S., Schmincke, H.U., 1995. Seismic and geochemical evidence for large-scale mantle upwelling beneath the eastern Atlantic and western and central Europe. Nature 374, 34–39. Humphreys, E.D., Dueker, K.G., Schutt, D.L., Smith, R.B., 2000. Beneath Yellowstone: evaluating plume and nonplume models using teleseismic images of the upper mantle. GSAToday 10, 1–7. Ichiki, M., Baba, K., Obayashi, M., Utada, H., 2006. Water content and geotherm in the upper mantle above the stagnant slab: interpretation of electrical conductivity and seismic P-wave velocity models. Phys. Earth Planet. Inter. 155, 1–15. Inoue, T., Tanimoto, Y., Irifune, T., Suzuki, T., Fukui, H., Ohtaka, O., 2004. Thermal expansion of wadsleyite, ringwoodite, hydrous wadsleyite and hydrous ringwoodite. Phys. Earth Planet. Inter. 143–144, 279–290. Jolivet, L., Faccenna, C., 2000. Mediterranean extension and the Africa–Eurasia collision. Tectonics 19 (6), 1095–1106. Jordan, B.T., 2005. Age-progressive volcanism of the Oregon High Lava Plains: overview and evaluation of tectonic models. In: Foulger, G.R., Natland, J.H., Presnall, D.C., Anderson, D.L. (Eds.), Plates, Plumes, and Paradigms 388. Geological Society of America Special Paper, pp. 503–515. Jordan, B.T., Grunder, A.L., Duncan, R.A., Deino, A.L., 2004. Geochronology of ageprogressive volcanism of the Oregon High Lava Plains: implications for the plume interpretation of Yellowstone. J. Geophys. Res. 109. doi:10.1029/2003JB002776. Jung, S., Hoernes, S., 2000. The major-and trace-element and isotope (Sr, Nd, O) geochemistry of Cenozoic alkaline rift-type volcanic rocks from the Rhon area (Central Germany): petrology, mantle source characteristics and implications for asthenosphere–lithosphere interactions. J. Volcanol. Geotherm. Res. 99, 27–53. Kelley, K.A., Plank, T., Grove, T.L., Stolper, E.M., Newman, S., Hauri, E., 2006. Mantle melting as a function of water content beneath back-arc basins. J. Geophys. Res. 111, B09208. doi:10.1029/2005jb003732. Kincaid, C., Griffith, R.W., 2003. Laboratory models of the thermal evolution of the mantle during rollback subduction. Nature 425, 58–62. King, S.D., Anderson, D.L., 1995. An alternative mechanism of flood basalt formation. Earth Planet. Sci. Lett. 136 (3–4), 269–279. King, S.D., Ritsema, J., 2000. African hot spot volcanism: small-scale convection in the upper mantle beneath cratons. Science 290 (5494), 1137–1140.Lagabrielle, Y., Goslin, J., Martin, H., Thirot, J.L., Auzende, J.M., 1997. Multiple active spreading centers in the hot North Fiji Basin (Southweast Pacific): a possible model for Archean seafloor dynamics ? Earth Planet. Sci. Lett. 149, 1–13. Lallemand, S., Font, Y., Bijwaard, H., Kao, H., 2001. New insights on 3D plates interaction near Taiwan from tomography and tectonic implications. Tectonophysics 335, 229–253. Leahy, G.M., Bercovici, D., 2007. On the dynamics of a hydrous melt layer above the transition zone. J. Geophys. Res.-Solid Earth 112 (B7), B07401. Leat, P.T., Pearce, J.A., Barker, P.F., Millar, I.L., Barry, T.L., Larter, R.D., 2004. Magma genesis and mantle flow at subducting slab edge: the South Sandwich arc-basin system. Earth Planet. Sci. Lett. 227, 17–35. doi:10.1016/j.epsl.2004.08.016. Lei, J., Zhao, D., 2005. P wave tomography and origin of the Changbai intraplate volcano in Northeast Asia. Tectonophysics 397, 281–295. doi:10.1016/j.tecto.2004.12.009. Lei, J., Zhao, D., Su, Y., 2009. Insight into the origin of the Tengchong intraplate volcano and seismotectonics in southwest China from local and teleseismic data. J. Geophys. Res. 114, B05302. doi:10.1029/2008JB005881. Levin, V., Shapiro, N., Park, J., Ritzwoller, M., 2002. Seismic evidence for catastrophic slab loss beneath Kamchatka. Nature 418, 763–767. Lewis S.D., Hayes, D.E., Mrozowski, C.L., 1982. The origin of the West Philippine basin by inter-arc spreading, Geology and Tectonics of Luzon and Marianas region; Proceedings of CCOP-IOC-SEATAR Workshop, Manila, Philippine, Philippine SEATAR Committeee specioal publication, ed. By G.R. Blace and F. Zanoria, 1, 31-51. Li, C., van der Hilst, R.D., Engdahl, E.R., Burdick, S., 2008. A new global model for Pwavespeed variations in Earth's mantle. Geochem. Geophys. Geosyst. 9, Q05018. doi:10.1029/2007GC001806. Li, C., van der Hilst, R.D., 2010. Structure of the upper mantle tranition zone beneath Southeast Asia from traveltime tomography. J. Geophys. Reasearch 115, B07308. doi:10.1029/2009JB006882. Liu, K., Gao, S., Gao, Y., Wu, J., 2008. Shear wave splitting and mantle flow associated with the deflected Pacific slab beneath northeast Asia. J. Geophys. Res. 113, B01305. Louden, K.E., 1976. Magnetic anomalies in the West Philippine Basin. In: Sutton, G.H., Manghnani, M.H., Moberly, R. (Eds.), The geophysics of the Pacific Ocean Basin and its margin; Geophys. Monograph Ser, 19. AGU, Washington DC, pp. 253–267. Lucente, F.P., Margheriti, L., Piromallo, C., Barruol, G., 2006. Seismic anisotropy reveals the long route of the slab through the western-central Mediterranean mantle. Earth Planet. Sci. Lett. 241, 517–529. Lucente, P.F., Chiarabba, C., Cimini, G.B., Giardini, D., 1999. Tomographic constarints on the geodynamic evolution of the Italian region. J. Geophys. Res. 104, 20307–20327. Lustrino, M., Wilson, M., 2007. The circum-Mediterranean anorogenic Cenozoic igneous province. Earth Sci. Rev. doi:10.1016/j.earscirev.2006.09.002. Maruyama, S., Okamoto, K., 2007.Water transportation fromthe subducting slab into the mantle transition zone. Gondwana Res. 11, 148–165. doi:10.1016/j.gr.2006.06.001. McKee, E.H., Klock, P.R., 1974. K–Ar ages of basalts, Benham Rise, West Philippine Basin, Leg 31. Rep. DSDP, 31. US Gov. Printing Office, Washington DC, pp. 299–600. Montelli, R., Nolet, G., Dahlen, F.A., Masters, G., Engdahl, E.R., Hung, S.H., 2004. Finitefrequency tomography reveals a variety of plumes in the mantle. Science 303 (5656), 338–343. Montuori, C., Cimini, G.B., Favali, P., 2007. Teleseismic tomography of the southern Tyrrhenian subduction zone: new results from seafloor and land recordings. J. Geophys. Res. 112, B03311. doi:10.1029/2005JB004114. Moresi, L., Solomatov, V.S., 1995. Numerical investigations of 2D convection with extremely large viscosity variations. Phys. Fluids 7, 2154–2162. Morgan, W.J., 1971. Convection plumes in the lower mantle. Nature 230, 42–43. Mrozowski, C.L., Lewis, S.D., Hayes, D.E., 1982. Complexities in the tectonic evolution of the West Philippine basin. Tectonophysics 82, 1–24. Natland, J., 1980. The progression of volcanism in the Samoan linear volcanic chain. Am. J. Sci. 280-A, 709–735. Obrebski, M., Allen, R.M., Xue, M., Hung, S.H., 2010. Slab-plume interaction beneath the Pacific Northwest. Geophys. Res. Lett. 37, L14305. doi:10.1029/2010GL043489. Ozima, M., Kaneokam, I., Ujiie, H., 1977. 40Ar–39Ar age of rocks and the development mode of the Philippine Sea. Nature 267, 816–818. Parson, L.M., Wright, I.C., 1996. The Lau-Havre-Taupo back-arc basin: a southwardpropagating, multi-stage evolution from rifting to spreading. Tectonophysics 263, 1–22. Pelletier, B., Calmant, S., Pillet, R., 1998. Current tectonics of the Tonga–New Hebrides region. Earth Planet. Sci. Lett. 164, 263–273. Pelletier, B., Lagabrielle, Y.M., Cabioch, G., Calmant, S., Garel, E., Guivel, C., 2001. Newly identified segments of the Pacific–Australia plate boundary along the North Fiji Transform Zone. Earth Planet. Sci. Lett. 193, 347–358. Peyton, V., Levin, V., Park, J., Brandon, M.T., Lees, J., Gordeev, E., Ozerov, A., 2001. Mantle flow at a slab edge: seismic anisotropy in the Kamchatka region. Geophys. Res. Lett. 28, 379–382. doi:10.1029/2000GL012200. Pierce, K.L., Morgan, L.A., Saltus, R.W., 2000. Yellowstone Plume Head: Postulated Tectonic Relations to the Vancouver Slab, Continental Boundaries and Climate. 39. Pierce, K.L., Morgan, W.J., 1992. The track of theYellowstone hotspot: volcanism, faulting, and uplift. In: Link, P.K., Kuntz, P.L.B., A., M. (Eds.), Regional Geology of Eastern Idaho and Western Wyoming 179: Geological Society of America Memoir, pp. 1–53. Piromallo, C., Morelli, A., 2003. P wave tomography of the mantle under the Alpine– Mediterraneanarea. J.Geophys. Res.-Solid Earth 108 (B2), 2065 10.129/2002JB001757. Piromallo, C., Faccenna, C., 2004. How deep can we find the traces of Alpine subduction? Geophys. Res. Lett. 31. doi:10.1029/2003GL019288. Piromallo, C., Gasperini, D., Macera, P., Faccenna, C., 2008. A late Cretaceous contamination episode of the European–Mediterranean mantle. Earth Planet. Sci. Lett. 268, 15–27. Piromallo, P., Becker, T.W., Funiciello, F., Faccenna, C., 2006. Three dimensional instantaneous mantle flow induced by subduction. Geophys. Res. Lett. 33. doi:10.1029/2005GL025390. Pysklywec, R.N., Mitrovica, J.X., Ishii, M., 2003. Mantle avalanche as a driving force for tectonic reorganization in the southwest Pacific. Earth Planet. Sci. Lett. 209, 29–38. Raddick, M.J., Parmentier, E.M., Scheirer, D.S., 2002. Buoyant decompression melting: a possible mechanism for intraplate volcanism. J. Geophys. Res. 107 (B10), 2228. doi:10.1029/2001JB000617. Richard, G.C., Iwamori, H., 2010. Stagnant slab, wet plumes and Cenozoic volcanism in East Asia. Phys. Earth Planet. Inter. doi:10.1016/j.pepi.2010.02.009. Ritter, J.R.R., Jordan, M., Christensen, U.R., Achauer, U., 2001. A mantle plume below the Eifel volcanic fields. Germany. Earth Planet. Sci. Lett. 186, 7–14. Roy, M., Jordan, T.H., Pederson, J., 2009. Colorado Plateau magmatism and uplift by warming of heterogeneous lithosphere. Nature 459. doi:10.1038/nature08052. Ruellan, E., Delteil, J., Wright, I., Matsumoto, T., 2003. From rifting to active spreading in the Lau Basin–Havre Trough backarc system (SW Pacific)—locking/unlocking induced by seamount chain subduction. Geochem. Geophys. Geosyst. 4 (5), 8909. doi:10.1029/2001GC000261. Rupke, L.H., Morgan, J.P., Hort, M., Connolly, J.A.D., 2004. Serpentine and the subduction zone water cycle. Earth Planet. Sci. Lett. 223 (1–2), 17–34. Santosh, M., Omori, S., 2008. CO2 flushing: a plate tectonic perspective. Gondwana Res. 13, 86–102. doi:10.1016/jgr.2007.07.003. Schellart, W.P., 2004. Kinematics of subduction and subduction-induced flow in the upper mantle. J. Geophys. Res.—solid earth 109 (b7), b07401. Schellart, W.P., Lister, G.S., Toy, V.G., 2006. A Late Cretaceous and Cenozoic reconstruction of the Southwest Pacific region: Tectonics controlled by subduction and slab rollback processes. Earth-Sci. Rev. 76, 191–233. Schiano, P., 2003. Primitive mantle magmas recorded as silicate melt inclusions in igneous minerals. Earth Sci. Rev. 63 (1–2), 121–144. Schmeling, H., Babeyko, A., Enns, A., Faccenna, C., Funiciello, F., Gerya, T., Golabek, G., Grigull, S., Kaus, B.J.P., Morra, G., van Hunen, J., 2007. A benchmark comparison of subduction models. Phys. Earth Planet. Inter. 171, 198–223. Seno, T., Maruyama, S., 1984. Paleogeographic reconstruction and origin of the Philippine Sea. Tectonophysics 102, 53–84. Seranne, M., 1999. The Gulf of Lion continental margin (NW Mediterranean) revisited by IBS: an overview. In: Durand, B., et al. (Ed.), The Mediterranean Basins: Tertiary Extension Within the Alpine Orogen: Geol. Soc. Spec. Publ., 156, pp. 21–53. Sibuet, J.C., Deffontaines, B., Hsu, S.K., Thareau, N., Le Formal, J.P., Liu, C.S., the ACT party, 1998. Okinawa Trough backarc basin: early tectonic and magmatic evolution. J. Geophys. Res. 103, 30245–30267. Sigloch, K., McQuarrie, N., Nolet, G., 2008. Two-stage subduction history under North America inferred from multiple-frequency tomography. Nat. Geosci. 1, 458–462. Smith, R.B., Braile, L.W., 1994. The Yellowstone hotspot. J. Volcanol. Geotherm. Res. 61, 121–187. Smith, R.B., Jordan, M., Steinberger, B., Puskas, C.M., Farrell, J., Waite, G.P., Husen, S., Chang, W.L., O'Connell, R., 2009. Geodynamics of the Yellowstone hotspot and mantle plume: seismic and GPS imaging, kinematics, and mantle flow. J. Volcanol. Geotherm. Res. 188, 26–56. Speranza, F., Maniscalco, R., Mattei, M., Di Stefano, A., Butler, R.W.H., Funiciello, R., 1999. Timing and magnitude of rotations in the frontal thrust systems of southwestern Sicily. Tectonics 18, 1178–1197. Stegman, D.R., Freeman, J., Schellart, W.P., Moresi, L., May, D., 2006. Influence of trench width on subduction hinge retreat rates in 3-D models of slab rollback. Geochem. Geophys. Geosyst. 7. doi:10.1029/2005GC001056. Tackley, P.J., 2000. Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations 1. Pseudoplastic yielding. Geochem. Geophys. Geosyst. 1 2000GC000036. Taylor, B., Zellmer, K., Martinez, F., Goodliffe, A., 1996. Sea-floor spreading in the Lau back-arc basin. Earth Planet. Sci. Lett. 144, 35–40. Tetzlaff, M., Schmeling, H., 2000. The influence of olivine metastability on deep subduction of oceanic lithosphere. Phys. Earth Planet. Inter. 120, 29–38. Tonarini, S., Armienti, P., D'Orazio, M., Innocenti, F., 2001. Subduction-like fluids in the genesis of Mt. Etna magmas: evidence from boron isotopes and fluid mobile elements. Earth Planet. Sci. Lett. 192, 471–483. Turner, S., Hawkesworth, C.J., 1998. Using geochemistry to map mantle flow beneath the Lau Basin. Geology 26 (11), 1019–1022. doi:10.1130/0091-7613. Uyeda, S., Ben-Avraham, Z., 1972. Origin and development of the Philippine Sea. Nature 240, 176–178. Van der Hilst, R.D., 1995. Complex morphology of subducted lithosphere in the mantle beneath the Tonga trench. Nature 374, 154–157. van der Meijde, M., Marone, F., van der Lee, S., 2003. Seismic evidence for water deep in earth's upper mantle. Science 300, 1556. doi:10.1126/science.1083636. Van der Voo, R., 1993. Paleomagnetism of the Atlantic Thethys and Iapetus Oceans. Cambridge Univ, Press, New York. vanWijk, J., van Hunen, J.,Goes, S., 2008. Small-scale convection during continental rifting: evidence from the Rio Grande rift. Geology 36, 575–578. doi:10.1130/G24691A.1. Waite, G.P., Smith, R.B., Allen, R.M., 2006. Vp and Vs structure of the Yellowstone hot spot from teleseismic tomography: evidence for an upper mantle plume. J. Geophys. Res. 111 (B4), B04303. doi:10.1029/2005JB003867. Watts, A.B., Weissel, J.K., Larson, R.L., 1977. Seafloor spreading in marginal basins of the western Pacific. Tectonophysics 167–182. Weissel, J.K., 1977. Evolution of the Lau Basin by the growth of small plates. In: Talwani, M., Pitman, W.C. (Eds.), Island Arcs, Deep Sea Trenches, and Back-Arc basins: Am. Geophys. Union, Maurice Ewing Series, 1, pp. 429–436. West, J.D., Fouch, M.J., Roth, J.B., 2009. Vertical mantle flow associated with a lithospheric drip beneath the Great Basin. Nat. Geosci. 2 (6), 438–443.Wiens, D.A., Kelley, K.A., Plank, T., 2006. Mantle temperature variations beneath backarc spreading centers inferred from seismology, petrology, and bathymetry. Earth Planet. Sci. Lett. 248, 30–42. Wilson, M., Bianchini, G., 1999. Tertiary–Quaternary magmatism within the Mediterranean and surrounding regions. In: Durand, Jolivet, Horvath, Seranne (Eds.), The Mediterranean Basins: Tertiary extension within the Alpine orogen: Geol. Soc. London, 156, pp. 141–168. Wilson, M., Downes, H., 1991. Tertiary–Quaternary extension-related alkaline magmatism in western and central Europe. J. Petrol. 32, 811–849. Wilson, M., Downes, H., 1992. Mafic alkaline magmatism associated with the European Cenozoic rift system. Tectonophysics 208, 173–182. Wilson, M., Downes, H., 2006. Teriary–Quaternary intra-plate magmatism in Europe and its relationships to mantle dynamics. In: Gee, D., Stephenson, R. (Eds.), European Lithosphere Dynamics: Geol. Soc. Lond. Mem., 32, pp. 147–166. Wortel, M.J.R., Spakman, W., 2000. Subduction and slab detachment in the Mediterranean–Carpathian region. Science 290, 1910–1917. Xue, M., Allen, R.M., 2010. Mantle structure beneath the western United States and its implications for convection processes. J. Geophys. Res. 115, B07303. doi:10.1029/ 2008JB006079. Xue, M., Allen, R.M., 2007. The fate of the Juan de Fuca plate: implications for a Yellowstone plume head. Earth Planet. Sci. Lett. 264, 266–276. Yogodzinski, G.M., Lees, J.M., Churikova, T.G., Dorendorf, F., Woerner, G., Volynets, O.N., 2001. Geochemical evidence for the melting of subducting ocean lithosphere at plate edges. Nature 409, 500–504. doi:10.1038/35054039. Yuan, H.Y., Dueker, K., 2005. Teleseismic P-wave tomogram of the Yellowstone plume. Geophys. Res. Lett. 32, L07304. doi:10.1029/2004GL022056. Zakariadze, G.S., Dmitriev, L.V., Sobolev, V., Suschevskaya, N.M., 1980. Petrology of basalts of holes 447A, 449, and 450, South Philippine Sea transect, DSDP Leg 59. In: Kroenke, L., Scott, R., et al. (Eds.), Init. Repts. DSDP, 59. US Govt. Printing Office, Washington, pp. 669–680. Zellmer, K.E., Taylor, B., 2001. A three-plate kinematic model for Lau Basin opening. Geochem. Geophys. Geosyst. 2 2000GC000106. Zhang, Y.S., Tanimoto, T., 1992. Ridges, hotspots and their interaction as observed in seismic velocity maps. Nature 355, 45–49. Zhao, D., 2004. Global tomographic images of mantle plumes and subducting slabs: insight into deep Earth dynamics. Phys. Earth Planet. Inter. 146, 3–34. doi:10.1016/ j.pepi.2003.07.032. Zhao, D., Tian, Y., Lei, J., Liu, L., Zheng, S., 2009. Seismic image and origin of the Changbai intraplate volcano in East Asia: role of big mantle wedge above the stagnant Pacific slab. Phys. Earth Planet. Inter. 173, 197–206. Zhao, D., Xu, Y., Wiens, D., et al., 1997. Depth extent of the Lau back-arc spreading center and its relation to subduction processes. Science 278, 254–257. Zhong, S., Gurnis, M., 1995. Mantle convection with plates and mobile, faulted plate margins. Science 267, 838–842. Zhong, S., Gurnis, M., Moresi, L., 1998. Role of faults, nonlinear rheology, and viscosity structure in generating plates from instantaneous mantle flow models. J. Geophys. Res. 103, 15255–15268. Ziegler, P.A., 1992. European Cenozoic rift system. In: Ziegler, P.A. (Ed.), Geodynamics of rifting, vol. 1. Tectonophysics 208, 91–111en
dc.description.obiettivoSpecifico3.3. Geodinamica e struttura dell'interno della Terraen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorFaccenna, C.en
dc.contributor.authorBecker, T. W.en
dc.contributor.authorLallemand, S.en
dc.contributor.authorLagabrielle, Y.en
dc.contributor.authorFuniciello, F.en
dc.contributor.authorPiromallo, C.en
dc.contributor.departmentUniv Roma TRE, Dip Sci Geol, Rome, Italyen
dc.contributor.departmentUniv Calif Los Angeles, Dept Earth Sci, Los Angeles, CA USAen
dc.contributor.departmentUniv Montpellier 2, CNRS, Lab Geosci Montpellier, F-34095 Montpellier 5, Franceen
dc.contributor.departmentUniv Montpellier 2, CNRS, Lab Geosci Montpellier, F-34095 Montpellier 5, Franceen
dc.contributor.departmentUniv Roma TRE, Dip Sci Geol, Rome, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversità Roma Tre-
crisitem.author.deptUniversity Southern California, Los Angeles USA-
crisitem.author.deptGéosciences Montpellier, CNRS, Montpellier 2 University, France-
crisitem.author.deptUniv Montpellier 2, CNRS, Lab Geosci Montpellier, F-34095 Montpellier 5, France-
crisitem.author.deptDipartimento di Scienze Geologiche, Universita` degli Studi ‘‘Roma Tre,’’ Rome, Italy.-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0003-1924-9423-
crisitem.author.orcid0000-0003-3478-5128-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Faccenna_etal_EPSL2010.pdfMain article1.75 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

149
checked on Feb 10, 2021

Page view(s) 50

330
checked on Mar 27, 2024

Download(s)

26
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric