Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6892
DC FieldValueLanguage
dc.contributor.authorallChini, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallPacifici, F.; University of Tor Vergataen
dc.contributor.authorallEmery, W.; University of Coloradoen
dc.contributor.authorallPierdicca, N.; Sapienza University of Romeen
dc.contributor.authorallDel Frate, F.; University of Tor Vergataen
dc.date.accessioned2011-01-24T12:14:30Zen
dc.date.available2011-01-24T12:14:30Zen
dc.date.issued2008-06en
dc.identifier.urihttp://hdl.handle.net/2122/6892en
dc.description.abstractParametric and nonparametric approaches to evaluate land-cover change detection using very high resolution (VHR) satellite imagery are applied to the analysis of the demolition of the Rocky Flats nuclear weapons facility located near Denver, CO. Both maximum-likelihood and neural network classifiers are used to validate a new parallel architecture which improves the accuracy when applied to VHR satellite imagery for the study of land-cover change between sequential satellite acquisitions. An enhancement of about 14% was found between the single-step classification and the new parallel architecture, confirming the advantage and the robust improvement obtained with this architecture regardless of the classification algorithm used. In this paper, we demonstrate and document the demolition and removal of hundreds of buildings taken down to bare soil between 2003 and 2005 at the Rocky Flats site.en
dc.language.isoEnglishen
dc.publisher.nameIEEEen
dc.relation.ispartofTransaction on Geosciences and Remote Sensingen
dc.relation.ispartofseries6/46(2008)en
dc.subjectMaximum likelihood (ML)en
dc.subjectneural networks (NNs)en
dc.subjecturban change detectionen
dc.subjectvery high resolution (VHR) satellite imagesen
dc.titleComparing statistical and neural network methods applied to very high resolution satellite images showing changes in man-made structures at Rocky Flatsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1812-1821en
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementationen
dc.identifier.doi10.1109/TGRS.2008.916223en
dc.relation.references[1] K. Kouchi and F. Yamazaki, “Characteristics of tsunami-affected areas in moderate-resolution satellite images,” IEEE Trans. Geosci. Remote Sens., vol. 45, no. 6, pp. 1650–1657, Jun. 2007. [2] P. Gamba, F. Dell’Acqua, and G. Trianni, “Rapid damage detection in the Bam area using multitemporal SAR and exploiting ancillary data,” IEEE Trans. Geosci. Remote Sens., vol. 45, no. 6, pp. 1582–1589, Jun. 2007. [3] F. Bovolo and L. Bruzzone, “A split-based approach to unsupervised change detection in large-size multitemporal images: Application to tsunami-damage assessment,” IEEE Trans. Geosci. Remote Sens., vol. 45, no. 6, pp. 1658–1670, Jun. 2007. [4] E. A. Addink, I. Thonon, S. M. De Jong, B. G. H. Gorte, R. Beck, M. Van Persie, and H. Kramer, “The Mutatis Mutandis project: Single detection, multiple users—Change detection using high spatial-resolution imagery in Dutch urban areas,” in Proc. EARSeL Workshop SIG Urban Remote Sens., Mar. 2–3, 2006, pp. 1–8. [5] F. Pacifici, F. Del Frate, C. Solimini, and W. J. Emery, “An innovative neural-net method to detect temporal changes in high-resolution optical satellite imagery,” IEEE Trans. Geosci. Remote Sens., vol. 45, no. 9, pp. 2940–2952, Sep. 2007. [6] F. Del Frate, G. Schiavon, and C. Solimini, “Application of neural networks algorithms to QuickBird imagery for classification and change detection of urban areas,” in Proc. IEEE IGARSS, Anchorage, AK, 2004, pp. 1091–1094. [7] P. Serra, X. Pons, and D. Saurì, “Post-classification change detection with data from different sensors: Some accuracy considerations,” Int. J. Remote Sens., vol. 24, no. 16, pp. 3311–3340, Aug. 2004. [8] F. Sunar Erbek, C. Ozkan, and M. Taberner, “Comparison of maximum likelihood classification method with supervised artificial neural network algorithms for land use activities,” Int. J. Remote Sens., vol. 25, no. 9, pp. 1733–1748, May 2004. [9] V. Castelli, C. D. Elvidge, C. S. Li, and J. J. Turek, “Classificationbased change detection: Theory and application to the NALC data set,” in Remote Sensing Change Detection, R. S. Lunetta and C. D. Elvidge, Eds. Chelsea, MI: Ann Arbor Press, 1998. [10] D. Yuan and C. Elvidge, “NALC land cover change detection pilot study: Washington D.C. area experiments,” Remote Sens. Environ., vol. 66, no. 2, pp. 168–178, Nov. 1998. [11] G. S. Biging, D. R. Colby, and R. G. Congalton, “Sampling system for change detection accuracy assessment,” in Remote Sensing Change Detection, R. S. Lunetta and C. D. Elvidge, Eds. Chelsea, MI: Ann Arbor Press, 1998. [12] D. Koc and M. Turker, “Automatic building detection from high resolution satellite images,” in Proc. IEEE 2nd Int. Conf. RAST, 2005, pp. 617–622. [13] C. Bishop, Neural Networks for Pattern Recognition. New York: Oxford Univ. Press, 1995. [14] F. Del Frate, F. Pacifici, G. Schiavon, and C. Solimini, “Use of neural networks for automatic classification from high-resolution images,” IEEE Trans. Geosci. Remote Sens., vol. 45, no. 4, pp. 800–809, Apr. 2007. [15] J. A. Richard, Remote Sensing Digital Image Analysis: An Introduction. New York: Springer-Verlag, 1986. [16] A. Berge and A. S. Solberg, “A comparison of methods for improving classification of hyperspectral data,” in Proc. IGARSS, Anchorage, AK, 2004, vol. 2, pp. 945–948. [17] P. H. Swain and S. M. Davis, Remote Sensing: The Quantitative Approach. New York: McGraw-Hill, 1978. [18] M. F. Möller, “A scaled conjugate gradient algorithm for fast supervised learning,” Neural Netw., vol. 6, no. 4, pp. 525–533, 1993. [19] W. D. Hudson and C. W. Ramm, “Correct formulation of the Kappa coefficient of agreement,” Photogramm. Eng. Remote Sens., vol. 53, no. 4, pp. 421–422, 1987. [20] J. L. Van Genderen, B. F. Lock, and P. A. Vass, “Remote sensing: Statistical testing of thematic map accuracy,” Remote Sens. Environ., vol. 7, no. 1, pp. 3–14, 1978. [21] G. H. Rosenfield, K. Fitzpatrick-Lins, and H. S. Ling, “Sampling for the thematic map accuracy testing,” Photogramm. Eng. Remote Sens., vol. 48, pp. 131–137, 1982. [22] G. F. Hughes, “On the mean accuracy of statistical pattern recognizers,” IEEE Trans. Inf. Theory, vol. IT-14, no. 1, pp. 55–63, Jan. 1968. [23] D. A. Landgrebe, Signal Theory Methods in Multispectral Remote Sensing. Hoboken, NJ: Wiley, 2003. [24] J. Friedman, “Regularized discriminant analysis,” J. Amer. Stat. Assoc., vol. 84, no. 405, pp. 165–175, Mar. 1989. [25] J. Hoffbeck and D. Landgrebe, “Covariance matrix estimation and classification with limited training data,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 18, no. 7, pp. 763–767, Jul. 1996. [26] M. D. Richard and R. P. Lippmann, “Neural network classifiers estimate Bayesian a posteriori probabilities,” Neural Comput., vol. 3, no. 4, pp. 461–483, 1991. [27] H. Gish, “A probabilistic approach to the understanding and training of a neural network classifier,” in Proc. IEEE Int. Conf. Acoust., Signal, Speech Process., Albuquerque, NM, 1990, vol. 3, pp. 1361–1364. [28] J. D. Paola and R. A. Schowengerdt, “A detailed comparison of backpropagation neural network and maximum-likelihood classifier for urban land use classification,” IEEE Trans. Geosci. Remote Sens., vol. 33, no. 4, pp. 981–996, Jul. 1995.en
dc.description.obiettivoSpecifico1.10. TTC - Telerilevamentoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorChini, M.en
dc.contributor.authorPacifici, F.en
dc.contributor.authorEmery, W.en
dc.contributor.authorPierdicca, N.en
dc.contributor.authorDel Frate, F.en
dc.contributor.departmentUniversity of Tor Vergataen
dc.contributor.departmentUniversity of Coloradoen
dc.contributor.departmentSapienza University of Romeen
dc.contributor.departmentUniversity of Tor Vergataen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextreserved-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptLuxembourg Institute of Science and Technology (LIST)-
crisitem.author.deptDigital Globe, Research and Development, Longmotn, CO, USA-
crisitem.author.deptUniversity of Colorado, Boulder (CO), USA-
crisitem.author.deptSapienza Università di Roma-
crisitem.classification.parent05. General-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2008_TGRS_Chini_et_al.pdf3.11 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

37
checked on Feb 10, 2021

Page view(s)

165
checked on Apr 17, 2024

Download(s)

29
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric