Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6853
DC FieldValueLanguage
dc.contributor.authorallMartelli, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallBianchini, G.; Università di Ferraraen
dc.contributor.authorallBeccaluva, L.; Università di Ferraraen
dc.contributor.authorallRizzo, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.date.accessioned2011-01-24T07:07:02Zen
dc.date.available2011-01-24T07:07:02Zen
dc.date.issued2011-02-01en
dc.identifier.urihttp://hdl.handle.net/2122/6853en
dc.description.abstractWe have analyzed by single-step crushing helium and argon isotopes in olivine and orthopyroxene from mantle xenoliths of Calatrava (CLV) in central Spain and Tallante (TL) in southeast Spain. The investigation focused on carefully selected samples previously characterized in terms of major and trace elements on both bulk rock and constituent minerals, and Sr and Nd isotopes on clinopyroxene separates. Six analyses were performed on protogranular spinel lherzolites from CLV, and 17 were performed on spinel harzburgites, lherzolites, and orthopyroxenites from TL. The 40Ar/36Ar ratio was between 296 and 622, indicating atmospheric contamination, which probably occurred during exposure to the surface. The helium-isotope ratio (3He/4He) ranged between 3.6 and 6.5 Ra in CLV samples and between 1.4 and 5.7 Ra in TL samples. There was a positive correlation between the 3He/4He and 4He/40Ar* ratios, possibly reflecting diffusive fractionation between 3He, 4He, and 40Ar within mantle sections interacting with ascending melts. However, the difference between the maximum 3He/4He ratios measured in CLV and TL appears to be related to significant differences in the metasomatic melts that affected the two sectors of the lithospheric mantle. In agreement with the findings of previous studies, the helium isotopes at CLV are compatible with metasomatism due to ascending HIMU-type asthenospheric melts. In contrast, the lower 3He/4He values recorded at TL suggest subduction-related metasomatic components that are possibly related to the Cenozoic subduction of the Betic system. Such event plausibly introduced crust-derived fluids that metasomatized the mantle wedge, slightly decreasing its 3He/4He value. Noble gases appear decoupled from other elements during these mantle processes, since comparatively low 3He/4He values have been recorded also in samples that are relatively unmetasomatized in terms of incompatible lithophile elements. We hypothesize a role for volatile-dominated, CO2-rich fluids progressively decoupling from the ascending metasomatic melts and migrating in the surrounding peridotite matrix to form a diffuse aureola enriched in noble gases.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofJournal of Volcanology and Geothermal Researchen
dc.relation.ispartofseries/200(2011)en
dc.subjectnoble gasen
dc.subjectxenolithsen
dc.titleHelium and argon isotopic compositions of mantle xenoliths from Tallante and Calatrava, Spain.en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber18-26en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistryen
dc.identifier.doi10.1016/j.jvolgeores.2010.11.015en
dc.relation.referencesAllegre, C.J., Staudacher, T., Sarda, P., 1986/87. Rare gas systematics: formation of the atmosphere, evolution and structure of the Earth's mantle. Earth Planet. Sci. Lett. 81, 127–150. Ancochea, E., 2004. La región volcánica del Campo de Calatrava. In: Vera, J.A. (Ed.), Geología de España. Sge Igme, Madrid, pp. 676–677. Bailey, K., Garson, M., Kearns, S., Velasco, A.P., 2005. Carbonate volcanism in Calatrava, central Spain: a report on the initial findings. Mineralog. Mag. 69, 907–915. Beccaluva, L., Bianchini, G., Bonadiman, C., Siena, F., Vaccaro, C., 2004. Coexisting anorogenic and subduction-related metasomatism in mantle xenoliths from the Betic Cordillera (southern Spain). Lithos 75, 67–87. Beccaluva, L., Azzouni-Sekkal, A., Benhallou, A., Bianchini, G., Ellam, R.M., Marzola, M., Siena, F., Stuart, F.M., 2007. Intracratonic asthenosphere upwelling and lithosphere rejuvenation beneath the Hoggar swell (Algeria): evidence from HIMU metasomatised lherzolite mantle xenoliths. Earth Planet. Sci. Lett. 260, 482–494. Beccaluva, L., Bianchini, G., Ellam, R.M., Marzola, M., Oun, K.M., Siena, F., Stuart, F.M., 2008. The role of HIMU metasomatic components in the African lithospheric mantle: petrological evidence from the Gharyan peridotite xenoliths, NW Libya. In: Coltorti, M., Gregoire, M. (Eds.), Mantle metasomatism in intra-plate and suprasubduction settings: London Geological Society, Special Publication, 293, pp. 253–277. Benito, R., López-Ruiz, J., Cebriá, J.M., Hertogen, J., Doblas, M., Oyarzun, J., 1999. Sr and O isotope constraints on source and crustal contamination in the high-K calc-alkaline and shoshonitic Neogene volcanic rocks of SE Spain. Lithos 46, 773–802. Bianchini, G., Beccaluva, L., Bonadiman, C., Nowell, G., Pearson, G., Siena, F., Wilson, M., 2007. Evidence of diverse depletion and metasomatic events in harzburgite– lherzolite mantle xenoliths from the Iberian plate (Olot, NE Spain): implications for lithosphere accretionary processes. Lithos 94, 25–45. Bianchini, G., Beccaluva, L., Siena, F., Tiepolo, M., 2009. Subduction and crust recycling — petrological evidence and U–Pb dating in mantle xenoliths from the Betic area (Spain). Goldschmidt. Geochimica et Cosmochimica Acta, Davos, special issue A119. Bianchini, G., Yoshikawa, M., Sapienza, G.T., 2010a. Comparative study of ultramafic xenoliths and associated lavas from South-Eastern Sicily: nature of the lithospheric mantle and insights on magma genesis. Mineral. Petrol. 98, 111–121. Bianchini, G., Beccaluva, L., Bonadiman, C., Nowell, G.M., Paerson, D.G., Siena, F., Wilson, M., 2010b. Mantle metasomatism by melts of HIMU piclogite component: new insights from Fe-lherzolite xenoliths (Calatrava Volcanic District, Central Spain). In: Coltorti, M., Downes, H., Gregoire, M., O'Reilly, S.Y. (Eds.), Petrological Evolution of the European Lithospheric Mantle: London Geological Society, Special Publications, 337, pp. 107–124. Brenan, J.M., Watson, E.B., 1988. Fluids in the lithosphere, 2. Experimental constraints on CO2 transport in dunite and quartzite at elevated P-T conditions with implications for mantle and crustal decarbonation processes. Earth Planet. Sci. Lett. 91 (1–2), 141–158. Brey, G.P., Köhler, T.P., 1990. Geothermobarometry in four phases lherzolites II. New thermobarometers and practical assessment of existing thermobarometers. J. Petrol. 31, 1353–1378. Buikin, A.I., Trieloff, M., Hopp, J., Althaus, T., Korochantseva, E.V., Schwarz, W., Altherr, R., 2005. Noble gas isotopes suggest deep mantle plume source of late Cenozoic mafic alkaline volcanism in Europe. Earth Planet. Sci. Lett. 230, 143–162. Burnard, P.G., 2004. Diffusive fractionation of noble gases and helium isotopes during mantle melting. Earth Planet. Sci. Lett. 220, 287–295. Burnard, P.G., Hu, R., Turner, G., Bi, X.W., 1999. Mantle, crustal and atmospheric noble gases in Ailaoshan Gold deposits, Yunnan Province, China. Geochim. Cosmochim. Acta 63, 1595–1604. Cebriá, J.M., López-Ruiz, J., 1995. Alkali basalts and leucitites in an extensional intracontinental plate setting: the late Cenozoic Calatrava Volcanic Province (central Spain). Lithos 35, 27–46. Cebriá, J.M., López-Ruiz, J., Doblas, M., Oyarzun, R., Hertogen, J., Benito, R., 2000. Geochemistry of the Quaternary alkali basalts of Garrotxa (NE Volcanic Province, Spain): a case of double enrichment of the mantle lithosphere. J. Volcanol. Geoth. Res. 102, 217–235. Cebriá, J.M., López-Ruiz, J., Carmona, J., Doblas, M., 2009. Quantitative petrogenetic constraints on the Pliocene alkali basaltic volcanism of the SE Spain Volcanic Province. J. Volcanol. Geoth. Res. 185, 172–180. Conticelli, S., Guarnieri, L., Farinelli, A., Mattei, M., Avanzinelli, R., Bianchini, G., Boari, E., Tommasini, S., Tiepolo, M., Prelevic, D., Venturelli, G., 2009. Trace elements and Sr–Nd–Pb isotopes of K-rich, shoshonitic, and calc-alkaline magmatism of the Western Mediterranean Region: genesis of ultrapotassic to calc-alkaline magmatic associations in a post-collisional geodynamic setting. Lithos 107, 68–92. Dodson, A., Brandon, A.D., 1999. Radiogenic helium in xenoliths from Simcoe, Washington, USA: implications for metasomatic processes in the mantle wedge above subduction zones. Chem. Geol. 160, 371–385. Downes, H., 2001. Formation and modification of the shallow sub-continental lithospheric mantle: a review of geochemical evidence from ultramafic xenolith suites and tectonically emplaced ultramafic massifs of Western and Central Europe. J. Petrol. 42, 233–250. Duggen, S., Hoernle, K., Van den Bogaard, P., Garbe-Schönberg, D., 2005. Post-collisional transition from subduction- to intraplate-type magmatism in the westernmost Mediterranean: evidence for continental-edge delamination of subcontinental lithosphere. J. Petrol. 46, 1155–1201. Dunai, T.J., Baur, H., 1995. Helium, neon and argon systematics of the European subcontinental mantle: implications for its geochemical evolution. Geochim. Cosmochim. Acta 59, 2767–2783. Dunai, T.J., Porcelli, D., 2002. The storage and transport of noble gases in the subcontinental mantle. In: Porcelli, D., Ballentine, C., Wieler, R. (Eds.), Reviews in Mineralogy: Noble gases in Cosmochemistry and Geochemistry: Min. Soc. Amer., 47, pp. 371–409. Farley, K.A., Neroda, E., 1998. Noble gases in the Earth's mantle. Annu. Rev. Earth Planet. Sci. 26, 189–218. Faure, G., 1986. Principles of Isotope Geology, 2nd edition. Wiley, Chichester. Gautheron, C., Moreira, M., Allegre, C., 2005. He, Ne and Ar composition of the European lithospheric mantle. Chem. Geol. 217, 97–112. Giggenbach, W.F., Sano, Y., Wakita, H., 1993. Isotopic composition of helium, and CO2 and CH4 contents in gas produced along the New Zealand part of a convergent plate boundary. Geochim. Cosmochim. Acta 57, 3427–3455. Graham, D.W., 2002. Noble gas isotope geochemistry of mid-ocean ridge and ocean island basalts; characterization of mantle source reservoirs. In: Porcelli, D., Wieler, R., Ballentine, C. (Eds.), Noble Gases in Geochemistry and Cosmochemistry. Reviews in Mineralogy and Geochemistry, Mineral. Soc. Amer., Washington, D.C. , pp. 247–318. Graham, D.W., Reid, M.R., Jordan, B.T., Grunder, A.L., Leeman, W.P., Lupton, J.E., 2009. Mantle source provinces beneath the Northwestern USA delimited by helium isotopes in young basalts. J. Volcanol. Geoth. Res. 188, 128–140. Gurenko, A.A., Hoernle, K.A., Hauff, F., Schmincke, H.-U., Han, D., Miura, Y.N., Kaneoka, I., 2006. Major, trace element and Nd–Sr–Pb–O–He–Ar isotope signatures of shield stage lavas from the central and western Canary Islands: insights into mantle and crustal processes. Chem. Geol. 233, 75–112. Hanyu, T., Kaneoka, I., 1997. The uniform and low 3He/4He ratios of HIMU basalts as evidence for their origin as recycled materials. Nature 390, 273–276. Harrison, D., Barry, T., Turner, G., 2004. Possible diffusive fractionation of helium isotopes in olivine and clinopyroxene phenocrysts. Eur. J. Mineralog. 16, 213–220. Heber, V.S., Brooker, R.A., Kelley, S.P., Wood, B.J., 2007. Crystal–melt partitioning of noble gases (helium, neon, argon, krypton, and xenon) for olivine and clinopyroxene. Geochim. Cosmochim. Acta 71, 1041–1061. Hilton, D.R., Hoogewerff, J.A., Van Bergen, M.J., Hammerschmidt, K., 1992. Mapping magma sources in the Sunda-Banda arcs, Indonesia: constraints from helium isotopes. Geochim. Cosmochim. Acta 56, 851–859. Hilton, D.R., Fischer, T.P., Marty, B., 2002. Noble gases and volatile recycling at subduction zones. In: Porcelli, D.P., Ballentine, C.J., Wieler, R. (Eds.), Noble gases in geochemistry and cosmochemistry: Rev. Mineral. Geochem., 47, pp. 319–370. Jambon, A., Weber, H., Braun, O., 1986. Solubility of He, Ne, Ar, Kr and Xe in a basalt melt in the range 1250–1600 °C. Geochemical implications. Geochim. Cosmochim. Acta 50, 401–408. Kelley, K.A., Plank, T., Farr, L., Ludden, J., Staudigel, H., 2005. Subduction cycling of U, Th, and Pb. Earth Planet. Sci. Lett. 234, 369–383. Kim, K.H., Nagao, K., Tanaka, T., Sumino, H., Nakamura, T., Okuno, M., Lock, J.B., Youn, J.S., Song, J., 2005. He–Ar and Nd–Sr isotopic composition of ultramafic xenoliths and host alkali basalts from the Korean peninsula. Geochem. J. 39, 341–356. López-Ruiz, J., Cebriá, J.M., Doblas, M., Oyarzun, M., Hoyos, M., Martín, C., 1993. The late Cenozoic alkaline volcanism of the Central Iberian Peninsula (Calatrava Volcanic Province, Spain): intra-plate volcanism related to extensional tectonics. J. Geol. Soc. 150, 915–922 López-Ruiz, J., Cebriá, J.M., Doblas, M., 2002. (2002) Cenozoic volcanism I: The Iberian Peninsula. In: Gibbons, W., Moreno, T. (Eds.), The Geology of Spain, Geological Society, London, pp. 417–438. Martelli, M., Nuccio, P.M., Stuart, F.M., Burgess, R., Ellam, R.M., Italiano, F., 2004. Helium–strontium isotope constraints on mantle evolution beneath the Roman Comagmatic Province, Italy. Earth Planet. Sci. Lett. 224, 295–308. Martelli, M., Nuccio, P.M., Stuart, F.M., Di Liberto, V., Ellam, R.M., 2008. Constraints on mantle source and interactions from He–Sr isotope variation in Italian Plio- Quaternary volcanism. Geochem. Geophys. Geosyst. 9, Q02001. doi:10.1029/ 2007GC001730. Matsumoto, T., Honda, M., Mcdougall, I., O'Reilly, S.Y., 1998. Noble gases in anhydrous lherzolites from the newer volcanics, southeastern Australia: a MORB-like reservoir in the subcontinental mantle — structural and textural relationships. Geochim. Cosmochim. Acta 62, 2521–2533. Matsumoto, Honda, M., McDougall, I., O'Reilly, S.Y., Norman, M., Yaxley, G., 2000. Noble gases in pyroxenites and metasomatised peridotites from the Newer Volcanics, southeastern Australia: implications for mantle metasomatism. Chem. Geol. 168, 49–73. Matsumoto, T., Morishita, T., Masuda, J., Fujioka, T., Takebe, M., Yamamoto, K., Arai, S., 2005. Noble gases in the Finero Phlogopite–Peridotites, Italian Western Alps. Earth Planet. Sci. Lett. 238, 130–145. McDonough, W.F., Sun, S.-s., 1995. The composition of the Earth. Chem. Geol. 120, 223–253. Meen, J.K., Eggler, D.H., Ayers, J.C., 1989. Experimental evidence for very low solubility of rare earth elements in CO2-rich fluids at mantle conditions. Nature 340, 301–303. Moreira, M., Kurz, M.D., 2001. Subducted oceanic lithosphere and the origin of the ‘high μ’ basalt helium isotopic signature. Earth Planet. Sci. Lett. 189, 49–57. Nuccio, P.M., Paonita, A., Rizzo, A., Rosciglione, A., 2008. Elemental and isotope covariation of noble gases in mineral phases from Etnean volcanics erupted during 2001–2005, and genetic relation with peripheral gas discharges. Earth Planet. Sci. Lett. 272, 683–690. O'Nions, R.K., Oxburgh, E.R., 1988. Helium, volatile fluxes and the development of continental crust. Earth Planet. Sci. Lett. 90, 331–347. Ozima, M., Podosek, F.A., 1983. Noble Gas Geochemistry. Cambridge University Press, Cambridge. Patterson, D.B., Farley, K.A., McInnes, 1997. Helium isotopic composition of the Tabar- Lihir-Tanga-Feni island arc, Papua New Guinea. Geochim. Cosmochim. Acta 61, 2485–2496. Porcelli, D., Ballentine, C., 2002. Models for the distribution of terrestrial noble gases and evolution of the atmosphere. In: Porcelli, D., Ballentine, C., Wieler, R. (Eds.), Reviews in Mineralogy: Noble gases in Cosmochemistry and Geochemistry: Min. Soc. Amer., 47, pp. 411–480. Porcelli, D.R., O'Nions, R.K., O'Reilly, S.Y., 1986. Helium and strontium isotopes in ultramafic xenoliths. Chem. Geol. 54, 237–249. Porcelli, D.R., O'Nions, R.K., Galer, S.J.G., Cohen, A.S., Mattey, D.P., 1992. Isotopic relationships of volatile and lithophile trace elements in continental ultramafic xenoliths. Contrib. Mineral. Petrol. 110, 528–538. Rudnick, R.L., Gao, S., 2003. Composition of the Continental Crust. In: Rudnick, R.L., Holland, H.D., Turekian, K.K. (Eds.), The Crust volume 3 of Treatise on Geochemistry. Elsevier-Pergamon, Oxford, pp. 1–64. Sapienza, G., Hilton, D.R., Scribano, V., 2005. Helium isotopes in peridotite mineral phases from Hyblean Plateau (south-eastern Sicily, Italy). Chem. Geol. 219, 115–129. Stuart, F.M., Ellam, R.M., Harrop, P.J., Fitton, J.G., Bell, B.R., 2000. Constraints on mantle plumes from the helium isotopic composition of basalt from the British Tertiary Igneous Province. Earth Planet. Sci. Lett. 117, 273–285. Turner, S.P., Platt, J.P., George, R.M.M., Kelley, S.P., Pearson, D.G., Nowell, G.M., 1999. Magmatism associated with orogenic collapse of the Betic–Alboran domain, SE Spain. J. Petrol. 40, 1011–1036. Yamamoto, J., Kagi, H., Kaneoka, I., Lai, Y., Prikhod'ko, V.S., Arai, S., 2002. Fossil pressures of fluid inclusions in mantle xenoliths exhibiting rheology of mantle minerals. Earth Planet. Sci. Lett. 198, 511–519. Yamamoto, J., Kaneoka, I., Nakai, S., Kagi, H., Prikhod'ko, V.S., Arai, S., 2004. Evidence for subduction-related components in the subcontinental mantle from low 3He/4He and 40Ar/36Ar ratio in mantle xenoliths from Far Eastern Russia. Chem. Geol. 207, 237–259. Yamamoto, J., Nishimura, K., Sugimoto, T., Takemura, K., Takahata, N., Sano, Y., 2009. Diffusive fractionation of noble gases in mantle with magma channels: origin of low He/Ar in mantle-derived rocks. Earth Planet. Sci. Lett. 280, 167–174. Zindler, A., Hart, S.R., 1986. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. Lett. 14, 493–571.en
dc.description.obiettivoSpecifico3.5. Geologia e storia dei vulcani ed evoluzione dei magmien
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorMartelli, M.en
dc.contributor.authorBianchini, G.en
dc.contributor.authorBeccaluva, L.en
dc.contributor.authorRizzo, A.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentUniversità di Ferraraen
dc.contributor.departmentUniversità di Ferraraen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto di Fisica Applicata Nello Carrara, CNR, Sesto Fiorentino, Italy-
crisitem.author.deptUniversità di Ferrara-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italia-
crisitem.author.orcid0000-0001-8525-1754-
crisitem.author.orcid0000-0003-2225-3781-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Martelli et al., 2011 Spagna.pdfMain Article810.81 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

22
checked on Feb 7, 2021

Page view(s) 50

214
checked on Apr 17, 2024

Download(s)

32
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric