Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6771
DC FieldValueLanguage
dc.contributor.authorallSulpizio, R.; Dipartimento Geomineralogico, CIRISIVU, Bari, Italyen
dc.contributor.authorallCioni, R.; Dipartimento di Scienze della Terra,Cagliari, Italyen
dc.contributor.authorallDi Vito, M. A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallMele, D.; Dipartimento Geomineralogico, CIRISIVU, Bari, Italyen
dc.contributor.authorallBonasia, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallDellino, P.; Dipartimento Geomineralogico, CIRISIVU, Bari, Italyen
dc.date.accessioned2011-01-19T12:56:03Zen
dc.date.available2011-01-19T12:56:03Zen
dc.date.issued2010en
dc.identifier.urihttp://hdl.handle.net/2122/6771en
dc.description.abstractThe stratigraphic succession of the Pomici di Avellino Plinian eruption from Somma-Vesuvius has been studied through field and laboratory data in order to reconstruct the eruption dynamics. This eruption is particularly important in the Somma-Vesuvius eruptive history because (1) its vent was offset with respect to the present day Vesuvius cone; (2) it was characterised by a distinct opening phase; (3) breccia-like very proximal fall deposits are preserved close to the vent and (4) the pyroclastic density currents generated during the final phreatomagmatic phase are among the most widespread and voluminous in the entire history of the volcano. The stratigraphic succession is, here, divided into deposits of three main eruptive phases (opening, magmatic Plinian and phreatomagmatic), which contain five eruption units. Short-lived sustained columns occurred twice during the opening phase (Ht of 13 and 21.5 km, respectively) and dispersed thin fall deposits and small pyroclastic density currents onto the volcano slopes. The magmatic Plinian phase produced the main volume of erupted deposits, emplacing white and grey fall deposits which were dispersed to the northeast. Peak column heights reached 23 and 31 km during the withdrawal of the white and the grey magmas, respectively. Only one small pyroclastic density current was emplaced during the main Plinian phase. In contrast, the final phreatomagmatic phase was characterised by extensive generation of pyroclastic density currents, with fallout deposits very subordinate and limited to the volcano slopes. Assessed bulk erupted volumes are 21×106 m3 for the opening phase, 1.3– 1.5 km3 for the main Plinian phase and about 1 km3 for the final phreatomagmatic phase, yielding a total volume of about 2.5 km3. Pumice fragments are porphyritic with sanidine and clinopyroxene as the main mineral phases but also contain peculiar mineral phases like scapolite, nepheline and garnet. Bulk composition varies from phonolite (white magma) to tephri-phonolite (grey magma).en
dc.language.isoEnglishen
dc.publisher.nameSpringer-Verlagen
dc.relation.ispartofBull. Volcanol.en
dc.relation.ispartofseries/72(2010)en
dc.subjectAvellino eruptionen
dc.subjectSomma-Vesuviusen
dc.subjectStratigraphyen
dc.subjectEruptive dynamicsen
dc.titleThe Pomici di Avellino eruption of Somma-Vesuvius (3.9 ka BP). Part I: stratigraphy, compositional variability and eruptive dynamicsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber539–558en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.10. Stratigraphyen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocksen
dc.identifier.doi10.1007/s00445-009-0339-xen
dc.relation.referencesAcocella V, Neri M, Sulpizio R (2009) Dike propagation within active central volcanic edifices: constraints from Somma-Vesuvius, Etna and analogue models. Bull Volcanol 71:219–223. doi:10.1007/ s00445-008-0258-2 Albore Livadie C (1980) Palma Campania (Napoli)—Resti di abitato dell’età del Bronzo Antico. Notizie degli scavi di antichità. Atti Acc Naz Lincei 8:59–101 Andronico D, Calderoni G, Cioni R, Sbrana A, Sulpizio R, Santacroce R (1995) Geological map of Somma-Vesuvius volcano. Period Mineral 64:77–78 Barberi F, Leoni L (1980) Metamorphic carbonate ejecta from Vesuvius plinian eruptions: evidence of the occurrence of shallow magma chambers. Bull Volcanol 43:107–120 Barberi F, Cioni R, Santacroce R, Sbrana A, Vecci R (1989) Magmatic and phreatomagmatic phases in explosive eruptions of Vesuvius as deduced by grain-size and component analysis of the pyroclastic deposits. J Volcanol Geotherm Res 38:287– 307 Bertagnini A, Landi P, Rosi M, Vigliargio A (1998) The Pomici di Base plinian eruption of Somma-Vesuvius. J Volcanol Geotherm Res 83:219–239 Blott SJ, Pye K (2001) GRADISTAT: a grain-size distribution and statistic package for the analysis of unconsolidated sediments. Earth Surf Proc Landf 26:1237–1248 Bonadonna C, Phillips JC (2003) Sedimentation from strong volcanic plumes. J Geophys Res 108:2340. doi:10.1029/2002JB002034 Buttner R, Dellino P, Zimanowski B (1999) Identifying modes of magma/water interaction from the surface features of ash particles. Nature 401:688–690 Carey S, Sparks RSJ (1986) Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull Volcanol 48:109–125 Cas R, Wright JW (1987) Volcanic successions: modern and ancient. Allen and Unwin, London Cioni R, Marianelli P, Sbrana A (1992) Dynamics of the AD 79 eruption: stratigraphic, sedimentological and geochemical data on the succession from the Somma-Vesuvius southern and eastern sectors. Acta Volcanol 2:109–123 Cioni R, Morandi D, Sbrana A, Sulpizio R (1999a) L'eruzione delle pomici di Avellino: aspetti stratigrafici e vulcanologici. In: Albore Livadie C (ed) L'eruzione vesuviana delle “Pomici di Avellino” e la facies di Palma Campania (Bronzo antico). Territorio Storico e Ambiente 2. Centro Universitario Europeo per i Beni Culturali, Ravello, Edipuglia, Bari, pp 61–82 Cioni R, Santacroce R, Sbrana A (1999b) Pyroclastic deposits as a guide for reconstructing the multi-stage evolution of the Somma- Vesuvius caldera. Bull Volcanol 60:207–222 Cioni R, Marianelli P, Santacroce R, Sbrana A (2000a) Plinian and subplinian eruptions. In: Sigurdsson H, Houghton BF, McNutt S, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 477–494 Cioni R, Levi S, Sulpizio R (2000b) Apulian Bronze Age pottery as a long distance indicator of the Avellino Pumice eruption (Vesuvius, Italy). In: McGuireWG, Griffiths DR, Hancock PL, Stewart IS (eds) TheArchaeology of geological catastrophes.Geol Soc London Spec Pub 171:159–177 Cioni R, Longo A, Macedonio G, Santacroce R, Sbrana A, Sulpizio R, Andronico D (2003a) Assessing pyroclastic fall hazard through field data and numerical simulations: the example from Vesuvius. J Geophys Res 108:2063. doi:10.1029/2001JB000642 Cioni R, Sulpizio R, Garruccio N (2003b) Variability of the eruption dynamics during a subplinian event: the Greenish Pumice eruption of Somma-Vesuvius (Italy). J Volcanol Geotherm Res 124:89–114 Cioni R, Bertagnini A, Santacroce R, Andronico D (2008) Explosive activity and eruption scenarios at Somma-Vesuvius (Italy): towards a new classification scheme. J Volcanol Geotherm Res 178:331–346. doi:10.1016/j.jvolgeores.2008.04.024 Civetta L, Galati R, Santacroce R (1991) Magma mixing and convective compositional layering within the Vesuvius magma chamber. Bull Volcanol 53:287–300 Costa A,Dell'Erba F, Di Vito M, Isaia R, Macedonio G, Orsi G, Pfeiffer T (2008) Tephra fallout hazard assessment at the Campi Flegrei caldera (Italy). Bull Volcanol 71:259–273. doi:10.1007/s00445-008-0220-3 Dellino P, La Volpe L (1995) Fragmentation versus transportation mechanisms in the pyroclastic sequence of Monte Pilato—Rocche Rosse (Lipari, Italy). J Volcanol Geotherm Res 64:211–232 Di Vito MA, Sulpizio R, Zanchetta G, D'Orazio M (2008) The late Pleistocene pyroclastic deposits of the Campanian Plain: new insights into the explosive activity of Neapolitan volcanoes. J Volcanol Geotherm Res 177:19–48. doi:10.1016/j.jvolgeores.2007.11.019 Di Vito MA, Zanella E, Gurioli L, Lanza R, Sulpizio R, Bishop J, Tema E, Bonzi G, La Forgia E (2009) The Afragola settlement near Vesuvius, Italy: the destruction and abandonment of a Bronze Age village revealed by archaeology, volcanology and rock-magnetism. Earth Planet Sci Lett 277:408–421. doi:10.1016/j.epsl.2008.11.006 Fierstein J, HildrethW(1992) The Plinian eruptions of 1912 at Novarupta, Katmai National Park, Alaska. Bull Volcanol 54:646–684 Fierstein J, Nathenson M (1992) Another look at the calculation of tephra fallout volumes. Bull Volcanol 54:156–167 Fierstein J, Houghton BF, Wilson CJN, HildrethW (1997) Complexities of plinian fall deposition at vent: an example from the 19 12 Novarupta eruption (Alaska). J Volcanol Geotherm Res 76:215–227 Fisher RV, Schmincke HU (1984) Pyroclastic rocks. Springer, Berlin Folk RL,WardWC (1957) Brazos river bar: a study in the significance of grain-size parameters. J Sed Petrol 27:3–26 Gurioli L, Pareschi MT, Zanella E, Lanza R, Deluca E, Bisson M (2005) Interaction of pyroclastic currents with human settlements: evidences from ancient Pompeii. Geology 33:441–444 Heiken G, Wohletz K (1985) Volcanic ash. University of California Press, Berkeley, California Hildreth W (1991) The timing of caldera collapse at Mount Katmai in response to magma withdrawal towards Novarupta. Geophys Res Lett 18:1541–1544 Houghton BF, Wilson CJN (1989) A vesicularity index for pyroclastic deposits. Bull Volcanol 51:451–462 Houghton BF, Wilson CJN, Fierstein J, Hildreth W (2004) Complex proximal deposition during the Plinian eruptions of 1912 at Novarupta, Alaska. Bull Volcanol 66:95–199. doi:10.1007/ s00445-003-0297-7 Hunt JB, Hill PG (1993) Tephra geochemistry: a discussion of some persistent analytical problems. Holocene 3:271–278 Johnston Lavis HJ (1884) The geology of the Mt. Somma and Vesuvius: being a study of volcanology. Q J Geol Soc London 40:35–149 Joron JL,Metrich N, Rosi M, Santacroce R, Sbrana A (1987) Chemistry and petrography. In: Santacroce R (ed) Somma Vesuvius. Quad Ric Sci CNR 114:105–174 Kaminsky E, Jaupart C (2001) Marginal stabilityof atmospheric eruption columns and pyroclastic flow generation. J Geophys Res 106:21,785–21,798 Legros F (2000) Minimum volume of a tephra fallout deposit estimated from a single isopach. J Volcanol Geotherm Res 96:25–32 Lirer L, Pescatore T, Booth B, Walker GPL (1973) Two plinian pumice-fall deposits from Somma-Vesuvius, Italy. Geol Soc Am Bull 84:759–772 Marianelli P, Sbrana A (1998) Risultati dimisure di standard di minerali e di vetri naturali in microanalisi a dispersione di energia. Atti Soc Toscana Sci Nat Resid Pisa, Mem Ser A 105:57–63 Marzocchi W, Sandri L, Gasparini P, Newhall C, Boschi E (2004) Quantifying probabilities of volcanic events: the example of volcanic hazard at Mount Vesuvius. J Geophys Res 109:B11201. doi:10.1029/2004JB003155 Mastrolorenzo G, Palladino DM, Vecchio G, Taddeucci J (2002) The 472 AD Pollena eruption of Somma-Vesuvius (Italy) and its environmental impact at the end of Roman Empire. J Volcanol Geotherm Res 113:19–36 Mastrolorenzo G, Petrone P, Pappalardo L, Sheridan M (2006) The Avellino 3780-yr-B.P. catastrophe as a worst-case scenario for a future eruption at Vesuvius. PNAS 103:4366–4370 Moore JG (1967) Base surge in recent volcanic eruptions. Bull Volcanol 30:337–363 Neri A, Esposti Ongaro T, Monconi G, De' Michieli Pitturi M, Cavazioni C, Erbacci G, Baxter PJ (2007) 4D simulation of explosive eruption dynamics at Vesuvius. Geophys Res Lett 34: L04309. doi:10.1029/2006GL028597 Nielsen CH, Sigurdsson H (1981) Quantitative methods for electron microprobe analysis of sodium in natural and synthetic glasses. Am Mineral 66:547–552 Orsi G, Di Vito MA, Isaia R (2004) Volcanic hazard assessment at the restless Campi Flegrei caldera. Bull Volcanol 66:514–530. doi:10.1007/s00445-003-0336-4 Papale P, Rosi M (1993) A case of no-wind plinian fallout at Pululagua caldera (Ecuador): implications for models of clast dispersal. Bull Volcanol 55:523–535 Pescatore T, Sparks RSJ, Brazier S (1987) Reverse grading in the Avellino Plinian deposits of Vesuvius. Boll Soc Geol Ital 106:667–672 Pyle DM (1989) The thickness, volume and grain size of tephra fall deposits. Bull Volcanol 51:1–15 Rolandi G, Maraffi S, Petrosino P, Lirer L (1993a) The Ottaviano eruption of Somma-Vesuvius (8000 year BP): a magmatic alternating fall and flow-forming eruption. J Volcanol Geotherm Res 58:43–65 Rolandi G, Mastrolenzo G, Barrella AM, Borrelli A (1993b) The Avellino plinian eruption of Somma-Vesuvius (3760 y. B.P.): the progressive evolution from magmatic to hydromagmatic style. J Volcanol Geotherm Res 58:67–88 Rolandi G, Bellucci F, Cortini M (2004) A new model for the formation of the Somma caldera. Min Petrol 80:27–44 Rose WI, Bonis S, Stoiber R, Keller M, Bickford T (1973) Studies of volcanic ash from two recent Central American eruptions. Bull Volcanol 37:338–364 Rosi M, Principe C, Vecci R (1993) The 1631 eruption of Vesuvius reconstructed from the review of chronicles and study of deposits. J Volcanol Geotherm Res 58:151–182 Santacroce R (ed) (1987) Somma-Vesuvius. Quad Ric Sci CNR 114:1–230 Santacroce R, Sbrana A (eds) (2003) Geological map of Vesuvius at the scale 1:15,000. SELCA editore, Florence Santacroce R, Cioni R, Marianelli P, Sbrana A, Sulpizio R, Zanchetta G, Donahue DJ, Joron JL (2008) Age and whole rock–glass compositions of proximal pyroclastics from the major explosive eruptions of Somma-Vesuvius: a review as a tool for distal tephrostratigraphy. J Volcanol Geotherm Res 177:1–18. doi:10.1016/j.jvolgeores.2008.06.009 Scandone R, Cashman KV, Malone SD (2007) Magma supply, magma ascent and style of volcanic eruption. Earth Planet Sci Lett 253:513–529. doi:10.1016/j.epsl.2006.11.016 Sigurdsson H, Carey S, Cornell W, Pescatore T (1985) The eruption of Vesuvius in A.D. 79. Natl Geog Res 1:332–387 Sparks RSJ (1986) The dimensions and dynamics of volcanic eruption columns. Bull Volcanol 48:3–15 Spera FJ, Yuen DA, Greer JC, Sewell G (1986) Dynamics of magma withdrawal from stratified magma chambers. Geology 14:723–726 Sulpizio R (2005) Three empirical methods for the calculation of distal volume of tephra-fall deposits. J Volcanol Geotherm Res 145:315–336 Sulpizio R, Mele D, Dellino P, La Volpe L (2005) A complex, Subplinian-type eruption from low-viscosity, phonolitic to tephriphonolitic magma: the A.D. 472 (Pollena) eruption of Somma- Vesuvius, Italy. Bull Volcanol 67:743–767 Sulpizio R, Bonasia R, Dellino P, Di Vito MA, La Volpe L, Mele D, Zanchetta G, Sadori L (2008) Discriminating the-long distance dispersal of fine ash from sustained columns or near ground ash clouds: the example of the Pomici di Avellino eruption (Somma- Vesuvius, Italy). J Volcanol Geotherm Res 177:263–276. doi:10.1016/j.jvolgeores.2007.11.012 Sulpizio R, Bonasia R, Dellino P, Mele D, Di Vito MA, La Volpe L (2010) The Avellino eruption of Somma-Vesuvius (3.9 ka BP). part II: sedimentology and physical volcanology of pyroclastic density current deposits. Bull Volcanol. doi:10.1007/s00445-009-0340-4 Todesco M, Neri A, Esposti Ongaro T, Papale P, Macedonio G, Santacroce R, Longo A (2002) Pyroclastic flow hazard assessment at Vesuvius (Italy) by using numerical modelling: I. Largescale dynamics. Bull Volcanol 64:155–177 Walker GPL (1980) The Taupo Pumice: product of the most powerful known (ultraplininan) eruption? J Volcanol Geotherm Res 8:69–94 Walker GPL (1983) Ignimbrite types and ignimbrite problems. J Volcanol Geotherm Res 17:65–88en
dc.description.obiettivoSpecifico2.3. TTC - Laboratori di chimica e fisica delle rocceen
dc.description.obiettivoSpecifico3.5. Geologia e storia dei vulcani ed evoluzione dei magmien
dc.description.obiettivoSpecifico3.6. Fisica del vulcanismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorSulpizio, R.en
dc.contributor.authorCioni, R.en
dc.contributor.authorDi Vito, M. A.en
dc.contributor.authorMele, D.en
dc.contributor.authorBonasia, R.en
dc.contributor.authorDellino, P.en
dc.contributor.departmentDipartimento Geomineralogico, CIRISIVU, Bari, Italyen
dc.contributor.departmentDipartimento di Scienze della Terra,Cagliari, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentDipartimento Geomineralogico, CIRISIVU, Bari, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentDipartimento Geomineralogico, CIRISIVU, Bari, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptCIRISIVU, c/o Dipartimento Geomineralogico, Universita' di Bari-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptUniversita' di Bari, Dipartimento Geomineralogico-
crisitem.author.orcid0000-0002-3930-5421-
crisitem.author.orcid0000-0002-2526-9095-
crisitem.author.orcid0000-0002-7913-9149-
crisitem.author.orcid0000-0002-8935-335X-
crisitem.author.orcid0000-0001-6927-4905-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Di-sulpizio et al2010bv-partI.pdf2.17 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

46
checked on Feb 7, 2021

Page view(s) 20

361
checked on Apr 24, 2024

Download(s)

48
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric