Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6690
DC FieldValueLanguage
dc.contributor.authorallArienzo, I.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallMoretti, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallCivetta, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallOrsi, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallPapale, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.date.accessioned2011-01-17T07:50:14Zen
dc.date.available2011-01-17T07:50:14Zen
dc.date.issued2010en
dc.identifier.urihttp://hdl.handle.net/2122/6690en
dc.description.abstractMagmatic processes triggering eruptions at Campi Flegrei caldera (southern Italy) and their relationships with the widespread emissions of fluids and caldera unrest episodes, are poorly constrained. The 4.1 ka B.P. Agnano–Monte Spina eruption, the reference event for a future large-size explosive eruption at Campi Flegrei, was investigated to shed light, through melt inclusion and isotope analyses, on the geochemical processes operating in the plumbing system. Chemical and isotopic data on whole rocks and glasses suggest that at least two magma batches mixed during the course of the eruption. Melt inclusion data highlight the pre-eruption storage conditions of two magmatic end-members. One end-member is like the less differentiated (shoshonitic) Campi Flegrei erupted magma, while the other could be a residual of the Neapolitan Yellow Tuff magma. Mixing between these two components was driven by a large gas phase which sustained the ascent of magmas of deep provenance. The H2O and CO2 contents in pyroxene-hosted melt inclusions yield entrapment pressures between 107 and 211 MPa, corresponding to depths between 4 and 8 km. The degassing trends reveal two extreme patterns. One pattern, already documented in the literature, is the volatile signature of poorly differentiated magmas ascending from more than 8 km depth, while the other is related to a gas-dominated magma, flushed by a CO2-rich gas phase partly released from the deep reservoir. This study provides a conceptual frame for unrest phases at Campi Flegrei, such as the 1982–84 event. Uplift phases can be related to closed-system ascent of magmas and fluids from more than 8 km depth, and their emplacement at shallow levels. This leads the shallow system to store, and then progressively release, the accumulated gas. In this view, both unrest episodes and eruptions could be strongly influenced by both the achievement of a critical upper limit of gas storage in the shallow magmatic reservoir and the stress and fracturing state of the roof rocks. The present results help to constrain the preeruptive conditions expected at Campi Flegrei caldera in case of a future large-size eruptive event.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofChemical Geologyen
dc.relation.ispartofseries/270 (2010)en
dc.subjectSr and Nd isotopesen
dc.subjectMelt inclusionsen
dc.subjectGas flushingen
dc.subjectMagma mixingen
dc.titleThe feeding system of Agnano–Monte Spina eruption (Campi Flegrei, Italy): Dragging the past into present activity and future scenariosen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber135–147en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrologyen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.03. Magmasen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocksen
dc.identifier.doi10.1016/j.chemgeo.2009.11.012en
dc.relation.referencesAGIP, 1987. Geologia e Geofisica del sistema geotermico dei Campi Flegrei. DES, SERGMESG, S. Donato. Anderson Jr., A.T., Newman, S., Williams, S.N., Druitt, T.H., Skirius, C., Stolper, E., 1989. H2O, CO2, Cl and gas in Plinian and ash flow Bishop rhyolite. Geology 17, 221–225. Arienzo, I., Civetta, L., Heumann, A.,Wörner, G., Orsi, G., 2009. Isotopic evidence for open system processes within the Campanian Ignimbrite (Campi Flegrei-Italy) magma chamber. Bulletin of Volcanology 71 (3), 285–300. doi:10.1007/s00445-008-0223-0. Baker, D.R., Freda, C., Brooker, R.A., Scarlato, P., 2005. Volatile diffusion in silicate melts and its effects on melt inclusions. Annals of Geophysics 48 (4–5), 699–717. Barberi, F., Corrado, G., Innocenti, F., Luongo, G., 1984. Phlegraean Fields 1982–1984; brief chronicle of a volcano emergency in a densely populated area. Bulletin of Volcanology 47 (2), 175–185. Barsanti, M., Papale, P., Barbato, D., Moretti, R., Boschi, E., Hauri, E., Longo, A., 2009. Heterogeneous large total CO2 abundance in the shallow magmatic system of Kilauea volcano, Hawaii. Journal of Geophysical Research 114, B12201. doi:10.1029/2008JB006187. Bianco, F., Del Pezzo, E., Saccorotti, G., Ventura, G., 2004. The role of hydrothermal fluids in triggering the July–August 2000 seismic swarm at Campi Flegrei, Italy: evidence from seismological and mesostructural data. Journal of Volcanology and Geothermal Research 133, 229–246. Blundy, J., Cashman, K., 2008. Petrologic reconstruction of magmatic systems variables and processes. In: Putirka, K.D., Tepley, F.J. (Eds.), Minerals, Inclusions and Volcanic Processes, vol. 69, pp. 179–239. Bohrson, W.A., Spera, F.J., Fowler, S.J., Belkin, H.E., De Vivo, B., Rolandi, G., 2006. Petrogenesis of the Campanian Ignimbrite: implications for crystal–melt separation and open-system processes from major and trace elements and Th isotopic data. In: DeVivo, B. (Ed.), Volcanism in the Campania Plain: Vesuvius, Campi Flegrei and Ignimbrites. Developments in Volcanology, vol. 9, pp. 249–288. Caliro, S., Chiodini, G., Moretti, R., Avino, R., Granieri, D., Russo, M., Fiebig, J., 2007. The origin of the fumaroles of La Solfatara (Campi Flegrei, South Italy). Geochimica et Cosmochimica Acta 71 (12), 3040–3055. Cannatelli, C., Lima, A., Bodnar, R.J., De Vivo, B., Webster, J.D., Fedele, L., 2007. Geochemistry of melt inclusions from the Fondo Riccio and Minopoli 1 eruptions at Campi Flegrei (Italy). Chemical Geology 237 (3–4), 418–432.Casertano, L., Oliveri, A., Quagliariello, M.T., 1977. Hydrodynamics and geodynamics in the Phlegrean Fields area of Italy. Nature 264, 161–164. Chiarabba, C., Moretti, M., 2006. An insight into the unrest phenomena at the Campi Flegrei caldera from Vp and Vp/Vs tomography. Terra Nova 18 (6), 373–379. Chiodini, G., Frondini, F., Cardellini, C., Granieri, D., Marini, L., Ventura, G., 2001. CO2 degassing and energy release at Solfatara volcano, Campi Flegrei, Italy. Journal of Geophysical Research 106 (B8), 213–221. Chiodini, G., Todesco, M., Caliro, S., Del Gaudio, C., Macedonio, G., Russo, M., 2003. Magma degassing as a trigger of bradyseismic events; the case of Phlegrean Fields (Italy). Geophysical Research Letters 30 (8), 1434. doi:10.1029/2002GL01679. Civetta, L., Orsi, G., Pappalardo, L., Fisher, R.V., Heiken, G., Ort, M., 1997. Geochemical zoning, mingling, eruptive dynamics and depositional processes—the Campanian Ignimbrite, Campi Flegrei (Italy). Journal of Volcanology and Geothermal Research 75, 183–219. Collins, S.J., Pyle, D.M., Maclennan, J., 2009. Melt inclusions track pre-eruption storage and dehydration of magmas at Etna. Geology 37, 571–574 n°6. Costa, A., Dell'Erba, F., Di Vito, M., Isaia, R., Macedonio, G., Orsi, G., Pfeiffer, T., 2009. Tephra fallout hazard assessment at the Campi Flegrei caldera (Italy). Bulletin of Volcanology 71, 259–273. doi:10.1007/s00445-008-0220-3. Crescentini, L., Amoruso, A., 2007. Effects of crustal layering on the inversion of deformation and gravity data in volcanic areas: an application to the Campi Flegrei caldera, Italy. Geophysical Research Letters 34, L09303. doi:10.1029/2007GL029919. D'Antonio, M., Civetta, L., Orsi, G., Pappalardo, L., Piochi, M., Carandente, A., de Vita, S., Di Vito, M.A., Isaia, R., 1999. The present state of the magmatic system of the Campi Flegrei caldera based on a reconstruction of its behaviour in the past 12 ka. Journal of Volcanology and Geothermal Research 91, 247–268. D'Antonio, M., Tonarini, S., Arienzo, I., Civetta, L., Di Renzo, V., 2007. Components and processes in the magma genesis of the Phlegrean Volcanic District (Southern Italy). In: Beccaluva, L., Bianchini, G., Wilson, M. (Eds.), Cenozoic Volcanism in the Mediterranean Area: Geol Soc Am, 418, pp. 203–220. Deino, A.L., Orsi, G., de Vita, S., Piochi, M., 2004. The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera-Italy) assessed by 40Ar/ 39Ar dating method. Journal of Volcanology and Geothermal Research 133, 157–170. De Natale, G., Troise, C., Trigila, R., Dolfi, D., Chiarabba, C., 2004. Seismicity and 3-D substructure at Somma–Vesuvius volcano: evidence for magma quenching. Earth and Planetary Science Letters 221, 181–196. de Vita, S., Orsi, G., Civetta, L., Carandente, A., D'Antonio, M., Deino, A., di Cesare, T., Di Vito, M.A., Fisher, R.V., Isaia, R., Marotta, E., Necco, A., Ort, M., Pappalardo, L., Piochi, M., Southon, J., 1999. The Agnano–Monte Spina eruption (4100 years BP) in the restless Campi Flegrei caldera (Italy). Journal of Volcanology and Geothermal Research 91, 269–301. De Vivo, B., Rolandi, G., Gans, P.B., Calvert, A., Bohrson, W.A., Spera, F.J., Belkin, H.E., 2001. New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy). Mineralogy and Petrology 73, 47–65. Di Matteo, V., Mangiacapra, A., Dingwell, D.B., Orsi, G., 2006. Water solubility and speciation in shoshonitic and latitic melt composition from Campi Flegrei Caldera (Italy). Chemical Geology 229 (1–3), 113–124. Di Vito, M.A., Isaia, R., Orsi, G., Southon, J., de Vita, S., D'Antonio, M., Pappalardo, L., Piochi, M., 1999. Volcanism and deformation since 12000 years at the Campi Flegrei caldera (Italy). Journal of Volcanology and Geothermal Research 91, 221–246. Edmonds, M., 2008. New geochemical insights into volcanic degassing. Philosophical transactions of the Royal Society A—mathematical physical and engineering sciences 366. Issue 1885, 4559–4579. Fowler, S.J., Spera, F.J., Bohrson, W.A., Belkin, H.E., De Vivo, B., 2007. Phase equilibria constraints on the chemical and physical evolution of the Campanian Ignimbrite. Journal of Petrology 48, 459–493. Fulignati, P., Marianelli, M., Proto, M., Sbrana, A., 2004. Evidences for disruption of a crystallizing front in a magma chamber during caldera collapse: an example from the Breccia Museo unit (Campanian Ignimbrite eruption, Italy). Journal of Volcanology and Geothermal Research 133, 141–155. Gaeta, F.S., Peluso, F., Arienzo, I., Castagnolo, D., De Natale, G., Milano, G., Albanese, C., Mita, D.G., 2003. A physical appraisal of a new aspect of bradyseism: the miniuplifts. Journal of Volcanology and Geothermal Research 108, B8 2363. Gittings, J., 1979. The feldspathoidal alkaline rocks. In: Yoder, H.S. (Ed.), Evolution of Igneous Rocks. Princeton Univ. Press, pp. 361–390. Hamilton, D.L., McKenzie, W.S., 1965. Phase equilibrium studies in the system NaAlSiO4–KAlSiO4–SiO2–H2O. Mineralogical Magazine 34, 214–231. Johnson, E.R., Wallace, P.J., Cashman, K.V., Granados, H.D., Kent, A.J.R., 2008. Magmatic volatile contents and degassing-induced crystallization at Volcàn Jorullo, Mexico: implications for melt evolution and the plumbing systems of monogenic volcanoes. Earth and Planetary Science Letters 269, 478–487. Judenherc, S., Zollo, A., 2004. The Bay of Naples (southern Italy): constraints on the volcanic structures inferred from a dense seismic survey. Journal Geophysical Research 109 (B1), 0312. Langmuir, C.H., Vocke Jr, R.D., Hanson, G.N., Hart, S.R., 1978. A general mixing equation with applications to icelandic basalts. Earth and Planetary Science Letters 37, 380–392. Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., Zanettin, B., 1986. A chemical classification of volcanic rocks based on the total alkali–silica diagram. Journal of Petrology27, 745–750. Lowenstern, J.B., 1994. Chlorine, fluid immiscibility and degassing in peralkaline magmas from Pantelleria, Italy. American Mineralogist 79 (3–4), 353–369. Mangiacapra, A., Moretti, R., Rutherford, M., Civetta, L., Orsi, G., Papale, P., 2008. The deep magmatic system of the Campi Flegrei caldera (Italy). Geophysical Research Letters 35, L21304. doi:10.1029/2008GL035550. Marianelli, P.,Metrich, N., Sbrana, A., 1999. Shallowand deep reservoirs involved inmagma supply of the 1944 eruption of Vesuvius. Bulletin of Volcanology 61 (1–2), 48–63. Marianelli, P., Sbrana, A., Proto, M., 2006. Magma chamber of the Campi Flegrei supervolcano at the time of eruption of the Campanian Ignimbrite. Geology 34 (11), 937–940. Orsi, G., Civetta, L., D'Antonio, M., Di Girolamo, P., Piochi, M., 1995. Step filling and development of a zoned magma chamber: the Neapolitan Yellow Tuff case history. Journal of Volcanology and Geothermal Research 67, 291–312. Orsi, G., Civetta, L., Del Gaudio, C., de Vita, S., Di Vito, M.A., Isaia, R., Petrazzuoli, S., Ricciardi, G., Ricco, C., 1999. Short-termgrounddeformations and seismicity in the nested Campi Flegrei Caldera (Italy): an example of active block resurgence in a densely populated area. Journal of Volcanology and Geothermal Research 91, 415–451. Orsi, G., D'Antonio, M., de Vita, S., Gallo, G., 1992. The Neapolitan Yellow Tuff, a largemagnitude trachytic phreatoplinian eruption: eruptive dynamics, magmawithdrawal and caldera collapse. Journal of Volcanology and Geothermal Research 53, 275–287. Orsi, G., de Vita, S., Di Vito, M.A., 1996. The restless, resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration. Journal of Volcanology and Geothermal Research 74, 179–214. Orsi, G., Di Vito, M.A., Isaia, R., 2004. Volcanic hazard assessment at the restless Campi Flegrei caldera. Bulletin of Volcanology 66, 514–530. Orsi, G., Di Vito, M.A., Selva, J., Marzocchi, W., 2009. Long-term forecast of eruption style and size at Campi Flegrei caldera (Italy). Earth and Planetary Science Letters 287, 265–276. doi:10.1016/j.epsl.2009.08.013. Pabst, S., Wörner, G., Civetta, L., Tesoro, R., 2008. Magma chamber evolution prior to the Campanian Ignimbrite and Neapolitan Yellow Tuff eruptions (Campi Flegrei, Italy). Bulletin of Volcanology 70, 961–976. Papale, P., 2005. Determination of total H2O and CO2 budgets in evolving magmas from melt inclusion data. Journal of Geophysical Research 110, B03208. doi:10.1029/ 2004JB003033. Papale, P., Moretti, R., Barbato, D., 2006. The compositional dependence of the saturation surface of H2O+CO2 fluids in silicate melts. Chemical Geology 229 (1–3), 78–95. Pappalardo, L., Civetta, L., D'Antonio, M., Deino, A.L., Di Vito, M.A., Orsi, G., Carandente, A., de Vita, S., Isaia, R., Piochi, M., 1999. Chemical and isotopical evolution of the Phlegrean magmatic system before the Campanian Ignimbrite (37 ka) and the Neapolitan Yellow Tuff (12 ka) eruptions. Journal of Volcanology and Geothermal Research 91, 141–166. Pappalardo, L., Civetta, L., de Vita, S., Di Vito,M.A., Orsi, G., Carandente, A., Fisher, R.V., 2002a. Timing ofmagma extraction during the Campanian Ignimbrite eruption (Campi Flegrei Caldera). Journal of Volcanology and Geothermal Research 114, 479–497. Pappalardo, L., Piochi, M., D'Antonio, M., Civetta, L., Petrini, R., 2002b. Evidence for multi-stage magmatic evolution during the past 60kyr at Campi Flegrei (Italy) deduced from Sr, Nd and Pb isotope data. Journal of Petrology 43, 1415–1434. Ricco, C., Aquino, I., Borgstrom, S.E., Del Gaudio, C., 2007. A study of tilt change recorded from July to October 2006 at Phlegraean Fields (Naples, Italy). Annals of Geophysics 50 (5), 661–674. Roach, A.L., 2005. The evolution of silicic magmatism in the post-caldera volcanism of the Phlegrean Fields, Italy. PhD Thesis, Brown University. Rust, A.C., Cashman, K.V., Wallace, P.J., 2004. Magma degassing buffered by vapor flow through brecciated conduit margins. Geology 32, 349–352. Sambridge, M.S., Compston, W., 1994. Mixture modeling of multi-component data sets with application to ion-probe zircon ages. Earth and Planetary Science Letters 128, 373–390. Selva, J., Orsi, G., Di Vito, M.A., Marzocchi, W., Sandri, L., submitted for publication. Probability hazard map for future vent opening at the Campi Flegrei caldera, Italy. Journal of Geophysical Research. Signorelli, S., Vaggelli, G., Francalanci, L., Rosi, M., 1999. Origin of magmas feeding the Plinian phase of the Campanian Ignimbrite eruption (Phlegrean Fields, Italy): constraints based on matrix-glass and glass inclusion compositions. Journal of Volcanology and Geothermal Research 91, 199–220. Signorelli, S., Vaggelli, G., Romano, C., Carrol, M.R., 2001. Volatile element zonation in Campanian Ignimbrite magmas (Phlegrean Fields, Italy): evidence from the study of glass inclusion and matrix glasses. Contributions to Mineralogy and Petrology 140, 543–553. Spilliaert, N., Allard, P., Metrich, N., Sobolev, A.V., 2006. Melt inclusion record of the conditions of ascent, degassing, and extrusion of volatile-rich alkali basalt during the powerful 2002 flank eruption of Mount Etna (Italy). Journal Geophysical Research 111 (B4), 19. Tedesco, D., 1997. Systematic variations in the 3He/4He ratio and carbon of fumarolic fluids from active volcanic areas in Italy; evidence for radiogenic (super 4) He and crustal carbon addition by the subducting African Plate? Earth and Planetary Science Letters 151 (3–4), 255–269. Tedesco, D., Scarsi, P., 1999. Chemical (He, H2, CH4, Ne, Ar, Na) and isotopic (He, Ne, Ar, C) variations at the Solfatara crater (southern Italy): mixing of different sources in relation to seismic activity. Earth and Planetary Science Letters 171 (3), 465–480. Todesco, M., Berrino, G., 2005. Modeling hydrothermal fluid circulation and gravity signals at the Phlegraean Fields caldera. Earth Planetary Science Letters 240, 328–338 Controllare. Tonarini, S., Leeman, W.P., Civetta, L., D'Antonio, M., Ferrara, G., Necco, A., 2004. B/Nb and δ11B systematics in the Phlegrean Volcanic District (PVD). Journal of Volcanology and Geothermal Research 113, 123–139. Tonarini, S., 2006, INGV-DPC Projects 2005–2006—Volcanology INGV-DPC Project V3— Campi Flegrei Research Unit V3_2/2. Tonarini, S., D'Antonio, M., Di Vito, M.A., Orsi, G., Carandente, A., 2009. Geochemical and isotopical (B, Sr, Nd) evidence for mixing and mingling processes in the magmatic system feeding the Astroni volcano (4.1–3.8 ka) within the Campi Flegrei caldera (South Italy). Lithos 107, 135–151. Troise, C., Castagnolo, D., Peluso, F., Gaeta, F.S., Mastrolorenzo, G., De Natale, G., 2001. A 2D mechanical–thermal fluid–dynamical model for geothermal system at calderas:an application to Campi Flegrei. Journal of Volcanology and Geothermal Research 109, 1–12. Troise, C., De Natale, G., Pingue, F., Obrizzo, F., De Martino, P., Tammaro, U., Boschi, E., 2007. Renewed ground uplift at Campi Flegrei caldera (Italy): New insight on magmatic processes and forecast, Geophysical Research Letters 34, L03301. doi:10.1029/2006GL028545. Thornton, C.P., Tuttle, O.F., 1960. Chemistry of igneous rocks; I, Differentiation index. American Journal of Science 258, 664–684. Wohletz, K., Orsi, G., de Vita, S., 1995. Eruptive mechanisms of the Neapolitan Yellow Tuff interpreted from stratigraphic, chemical and granulometric data. Journal of Volcanology and Geothermal Research 67 (4), 263–290. Vanorio, T., Virieux, J., Zollo, A., Capuano, P., Russo, G., 2006. A rock physics and seismic tomography study to characterize the structure of the Campi Flegrei caldera. In: Zollo, A., et al. (Ed.), Geophysical Exploration of the Campi Flegrei (southern Italy) Caldera Interiors: Data, Methods and Results: Doppia Voce Editore, Napoli, pp. 25–33. Vigouroux, N., Wallace, P.J., Kent, A.J.R., 2008. Volatiles in high-K magmas from the Western Trans-Mexican Volcanic Belt: evidence from fluid fluxing and extreme enrichment of the mantle wedge by subduction processes. Journal of Petrology 49 :9, 1589–1618. doi:10.1093/petrology/egn039. Zollo, A., Judenherc, S., Auger, E., D'Auria, L., Virieux, J., Capuano, P., Chiarabba, C., de Franco, R., Makris, J., Nichelini, A., Musacchio, G., 2003. Evidence for a buried rim of Campi Flegrei caldera from 3-D active seismic imaging. Geophysical Research Letters 30. doi:10.1029/2003GL018173 NO. 19, 2002. Zollo, A., Maercklin, N., Vassallo, M., Dello Iacono, D., Virieux, J., Gasparini, P., 2008. Seismic 243 reflections reveal a massive melt layer under Campi Flegrei volcanic field. Geophysical Research Letters 244 35, L12306. doi:10.1029/2008GL034242.en
dc.description.obiettivoSpecifico2.3. TTC - Laboratori di chimica e fisica delle rocceen
dc.description.obiettivoSpecifico3.5. Geologia e storia dei vulcani ed evoluzione dei magmien
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorArienzo, I.en
dc.contributor.authorMoretti, R.en
dc.contributor.authorCivetta, L.en
dc.contributor.authorOrsi, G.en
dc.contributor.authorPapale, P.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptCentro Interdipartimentale di Ricerche in Ingegneria Ambientale, Seconda Università di Napoli, Naples, Italy.-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.orcid0000-0002-6213-056X-
crisitem.author.orcid0000-0003-2031-5192-
crisitem.author.orcid0000-0002-5207-2124-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Arienzo et al. 2010.pdf859.98 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

73
checked on Feb 10, 2021

Page view(s) 50

327
checked on Mar 27, 2024

Download(s)

32
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric