Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6678
DC FieldValueLanguage
dc.contributor.authorallMastrolorenzo, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallPappalardo, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2011-01-14T14:33:01Zen
dc.date.available2011-01-14T14:33:01Zen
dc.date.issued2010en
dc.identifier.urihttp://hdl.handle.net/2122/6678en
dc.description.abstractA probabilistic approach based on the available volcanological data on past Somma‐Vesuvius eruptions has been developed to produce hazard‐zone maps for fallout, pyroclastic density currents (PDCs), and secondary mass flows by using numerical simulations. The hazard maps have been incorporated in a GIS, making them accessible to casual and expert users for risk mitigation and education management. The results allowed us to explore the hazard related to different scenarios from all possible eruptions, ranked according to volcanic explosivity index (VEI) class, in the Vesuvius area and its surroundings including Naples. Particularly, eruptions with VEI ≤ 3 would produce a fallout hazard within about 10 km mostly east of the volcano and a PDC hazard within about 2 km from the crater. Large‐scale events (4 ≤ VEI ≤ 5) would produce a fallout hazard up to 80 km from the vent and a PDC hazard at distances exceeding 15 km. Particularly, the territory northwest of Vesuvius, including metropolitan Naples, featuring a low hazard level for fallout accumulation, is exposed to PDCs also consistent with field evidence and archeological findings. Both volcano flanks and surrounding plains, hills, and mountains are exposed to a moderate–high level of hazard for the passage of secondary mass flows. With the present level of uncertainty in forecasting future eruption type and size on the basis of statistical analysis as well as precursory activity, our results indicate that the reference scenario in the emergency plan should carefully match the worst‐case VEI 5 probabilistic scenario.en
dc.language.isoEnglishen
dc.publisher.nameThe American Geophysical Unionen
dc.relation.ispartofJournal of Geophysical Researchen
dc.relation.ispartofseries/115(2010)en
dc.subjectHazard assessmenten
dc.subjectvolcanismen
dc.subjectSomma‐Vesuviusen
dc.titleHazard assessment of explosive volcanism at Somma‐Vesuviusen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB12212en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.03. Magmasen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocksen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniquesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risken
dc.identifier.doi10.1029/2009JB006871en
dc.relation.referencesArnò, V., C. Principe, M. Rosi, R. Santacroce, A. Sbrana, and M. F. Sheridan (1987), Eruptive history, in Somma‐Vesuvius, edited by R. Santacroce, CNR Quad. Ric. Sci., 114(8), 53–103. Arrighi, S., C. Principe, and M. Rosi (2001), Violent Strombolian and sub‐ Plinian eruptions at assessment at Vesuvius (Italy) by using numerical modelling: 2. Analysis of flow variable, Bull. Volcanol., 64, 178–191. Barsotti, S., A. Neri, and J. Scire (2008), VOL‐CALPUFF model for atmospheric dispersal: 1. Approach and physical formulation, J. Geophys. Res., 113, B03208, doi:10.1029/2006JB004623. Baxter, P. J., W. P. Aspinall, A. Neri, G. Zuccaro, R. J. S. Spence, R. Cioni, and G. Woo (2008), Emergency planning and mitigation at Vesuvius: A new evidence‐based approach, J. Volcanol. Geotherm. Res., 178, 454–473, doi:10.1016/j.jvolgeores.2008.08.015. Bertagnini, A., P. Landi, R. Santacroce, and A. Sbrana (1991), The 1906 eruption of Vesuvius: From magmatic to phreatomagmatic activity through the flashing of a shallow depth hydrothermal system, Bull. Volcanol., 53, 517–532. Bertagnini, A., P. Landi, M. Rosi, and A. Vigliargio (1998), The Pomici di Base Plinian eruption of Somma‐Vesuvius, J. Volcanol. Geotherm. Res., 83, 219–239. Blaikie, P., T. Cannon, I. Davis, and B. Wisner (1994), At Risk: Natural Hazards, People’s Vulnerability and Disasters, Routledge, London. Blong, R. J. (1984), Volcanic Hazards: A Sourcebook of the Effects of Eruptions, Academic, Sydney. Bonadonna, C., C. B. Connor, B. F. Houghton, L. Connor, M. Byrne, A. Laing, and T. K. Hincks (2005), Probabilistic modeling tephra dispersal: Hazard assessment to a multiphase rhyolitic eruption at Tarawera, New Zealand, J. Geophys. Res., 110, B03203, doi:10.1029/ 2003JB002896. Chester, D. K. (2005), Theology and disaster studies: The need for dialogue, J. Volcanol. Geotherm. Res., 146, 319–328, doi:10.1016/ j.jvolgeores.2005.03.004. Cioni, R., A. Longo, G. Macedonio, R. Sanatacroce, A. Sbrana, R. Sulpizio, and D. Andronico (2003), Assessing pyroclastic fall hazard through field data and numerical simulations: Example from Vesuvius, J. Geophys. Res., 108(B2), 2063, doi:10.1029/2001JB000642. Cioni, R., A. Bertagnini, R. Santacroce, and R. Andronico (2008), Explosive activity and eruption scenarios of Somma‐Vesuvius (Italy): Towards a newclassification scheme, J. Volcanol. Geotherm. Res., 178, 331–346, doi:10.1016/j.jvolgeores.2008.04.024. Connor, B. C., E. B. Hill, B. Winfrey, M. N. Franklin, and C. P. La Femina (2001), Estimation of volcanic hazards from tephra fallout, Nat. Hazards Rev., 2, 33–42. Dellino, P., D. Mele, R. Sulpizio, L. La Volpe, and G. Braia (2008), A method for the calculation of the impact parameters of dilute pyroclastic density currents based on deposit particle characteristics, J. Geophys. Res., 113, B07206, doi:10.1029/2007JB005365.De Natale, G., C. Troise, F. Pingue, G. Mastrolorenzo, and L. Pappalardo (2006), The Somma–Vesuvius volcano (Southern Italy): Structure, dynamics and hazard evaluation, Earth Sci. Rev., 74, 73–111. Esposti Ongaro, T., A. Neri, G. Menconi, M. DeMichieli Vitturi, P. Marinelli, C. Cavazzoni, G. Erbacci, and P. J. Baxter (2008), Transient 3D simulation of column collapse and pyroclastic flow scenarios at Vesuvius, J. Volcanol. Geotherm. Res., 178, 378–396, doi:10.1016/j.jvolgeores.2008.06.036. Fournier d’Albe, E. M. (1979), Objectives of volcanic monitoring and prediction, J. Geol., 178, 366–377. Friedlander, S. K. (2000), Smoke, Dust and Haze: Fundamentals of Aerosol Behavior, John Wiley, New York. Furbish, D. J. (1997), Fluid Physics in Geology, 476 pp., Oxford Univ. Press, New York. Hazlett, R. V., D. Buesch, J. L. Anderson, R. Elan, and R. Scandone (1991), Geology, failure conditions, and implications of seismogenie avalanches of the 1944 eruption at Vesuvius, Italy, J. Volcanol. Geotherm. Res., 47, 249–264. Health and Safety Executive (1992), Tolerability of Risk from Nuclear Power Stations, HMSO, London. Kelfoun, K., P. Samaniego, P. Palacios, and D. Barba (2009), Testing the suitability of frictional behaviour for pyroclastic flow simulation by comparison with a well‐constrained eruption at tungurahua volcano (Ecuador), Bull. Volcanol., 71, 1057–1075, doi:10.1007/s00445-009- 0286-6. Le Roux, J. P. (1992), Settling velocity of spheres: A new approach, Sediment. Geol., 81, 11–16. Livadie, C. A., G. Mastrolorenzo, and G. Vecchio (1998), Eruzioni Pliniane del Somma‐Vesuvio e siti archeologici dell’area nolana, in Archeologia e Vulcanologia in Campania: atti del convegno, Pompei, 21 dicembre 1996, pp. 39–86, Arte Tipogr., Naples, Italy. Macedonio, G., A. Costa, and A. Folch (2008), Ash fallout scenarios at Vesuvius: Numerical simulations and implication for hazard assessment, J. Volcanol. Geotherm. Res., 178, 366–377, doi:10.1016/j.jvolgeores. 2008.08.014. Malin, M. C., and M. F. Sheridan (1982), Computer‐assisted mapping of pyroclastic surges, Science, 217, 637–640. Marzocchi, W., and G. Woo (2009), Principles of volcanic risk metrics: Theory and the case study of Mount Vesuvius and Campi Flegrei, Italy, J. Geophys. Res., 114, B03213, doi:10.1029/2008JB005908. Marzocchi, W., and L. Zaccarelli (2006), A quantitative model for the timesize distribution of eruptions, J. Geophys. Res., 111, B04204, doi:10.1029/2005JB003709. Marzocchi, W., L. Sandri, P. Gasparini, C. Newhall, and E. Boschi (2004), Quantifying probabilities of volcanic events: The example of volcanic hazard at Mount Vesuvius, J. Geophys. Res., 109, B11201, doi:10.1029/ 2004JB003155. Mastrolorenzo, G., and L. Pappalardo (2006), Magma degassing and crystallization processes during eruptions of high‐risk Neapolitan volcanoes: Evidence of common equilibrium rising processes in alkaline magmas, Earth Planet. Sci. Lett., 250, 164–181. Mastrolorenzo, G., S. Rossano, G. De Natale, F. Pingue, and A. Canzanella (1992), Meccanismi d’interazione magma‐acqua nell’area vulcanica napoletana, paper presented at I Convegno GNGTS, Gruppo Naz. di Geofis. della Terra Solida, Rome. Mastrolorenzo, G., R. Munno, and G. Rolandi (1993), Vesuvius 1906: A case study of a paroxysmal eruption and its relation to eruption cycles, J. Volcanol. Geotherm. Res., 58, 217–237. Mastrolorenzo, G., P. P. Petrone, M. Pagano, A. Incoronato, P. J. Baxter, A. Canzanella, and L. Fattori (2001), Herculaneum victims of Vesuvius in AD 79, Nature, 410, 769–770. Mastrolorenzo, G., D. Palladino, G. Vecchio, and J. Taddeucci (2002), The 472 AD Pollena eruption of Somma‐Vesuvius (Italy) and its environmental impact at the end of the Roman Empire, J. Volcanol. Geotherm. Res., 113, 19–36. Mastrolorenzo, G., P. Petrone, L. Pappalardo, and M. F. Sheridan (2006), The Avellino 3780 yr BP catastrophe as worst‐case scenario for a future eruption at Vesuvius, Proc. Natl. Acad. Sci. U. S. A., 103(12), 4366–4370. Mastrolorenzo, G., L. Pappalardo, C. Troise, A. Panizza, and G. De Natale (2008), Probabilistic tephra hazard maps for the Neapolitan area: Quantitative volcanological study of Campi Flegrei eruptions, J. Geophys. Res., 113, B07203, doi:10.1029/2007JB004954. Mastrolorenzo, G., P. Petrone, L. Pappalardo, and F. M. Guarino (2010), Lethal thermal impact at periphery of pyroclastic surges: Evidences at Pompeii, PLoS ONE, 5(6), e11127, doi:10.1371/journal.pone.0011127. McEwen, A. S., and M. C. Malin (1989), Dynamics of Mount St. Helens’ 1980 pyroclastic flows, rockslide‐avalanche, lahars, and blast, J. Volcanol. Geotherm. Res., 37, 205–231. Middleton, G. V., and J. B. Southard (1978), Mechanism of Sediment Movement, Short Course Lec. Notes, vol. 3, Soc. Sediment. Geol., Tulsa, Okla. Miller, M. C., I. N. McCave, and P. D. Komar (1977), Threshold of sediment motion under unidirectional currents, Sedimentology, 24, 507–527. Neri, A., T. Esposti Ongaro, G. Menconi, M. De’Michieli Vitturi, C. Cavazzoni, G. Erbacci, and P. J. Baxter (2007), 4D simulation of explosive eruption dynamics at Vesuvius, Geophys. Res. Lett., 34, L04309, doi:10.1029/2006GL028597. Neri, A., et al. (2008), Developing an event tree for probabilistic hazard and risk assessment at Vesuvius, J. Volcanol. Geotherm. Res., 178, 397–415, doi:10.1016/j.jvolgeores.2008.05.014. Newhall, C. G., and R. P. Hoblitt (2002), Constructing event trees for volcanic crises, Bull. Volcanol., 64, 3–20. Newhall, C. F., and S. Self (1982), The volcanic explosivity index (VEI): An estimate of explosive Magnitude for historical eruptions, J. Geophys. Res., 87(C2), 1231–1238, doi:10.1029/JC087iC02p01231. Pappalardo, L., and G. Mastrolorenzo (2010), Short residence times for alkaline Vesuvius magmas in a multi‐depth supply system: Evidence from geochemical and textural studies, Earth Planet. Sci. Lett., 296, 133–143, doi:10.1016/j.epsl.2010.05.010. Pareschi, M. T., R. Santacroce, M. Favalli, F. Giannini, M. Bisson, A. Meriggi, and L. Cavarra (2000), Un Gis per il Vesuvio, Felini, Pisa, Italy. Perla, R. I. (1980), Avalanche release, motion, and impact, in Dynamics of Snow and Ice Avalanches, edited by S. C. Colbeck, pp. 397–462, Academic, New York. Principe, C., and L. Marini (2008), Evolution of the Vesuvius magmatichydrothermal system before the 16 December 1631 eruption, J. Volcanol. Geotherm. Res., 171, 301–306, doi:10.1016/j.jvolgeores.2007.12.004. Principe, C., J. C. Tanguy, S. Arrighi, A. Paiotti, M. Le Goff, and U. Zoppi (2004), Chronology of Vesuvius activity from A.D. 79 to 1631 based on archeomagnetism of lavas and historical sources, Bull. Volcanol., 66, 703–724, doi:10.1007/s00445-004-0348-8. Rolandi, G., S. Maraffi, P. Petrosino, and L. Lirer (1993a), The Ottaviano eruption of Somma‐Vesuvio (8000 y B.P.): A magmatic alternating fall and flow‐forming eruption, J. Volcanol. Geotherm. Res., 58, 43–65. Rolandi, G., G. Mastrolorenzo, A. M. Barrella, and A. Borrelli (1993b), The Avellino Plinian eruption of Somma‐Vesuvius (3760 y B.P.): The progressive evolution from magmatic to hydromagmatic style, J. Volcanol. Geotherm. Res., 58, 67–88. Rolandi, G., A. M. Barrella, and A. Borrelli (1993c), The 1631 eruption of Vesuvius, J. Volcanol. Geotherm. Res., 58, 183–201. Rolandi, G., R. Munno, and I. Postiglione (2004), The A.D. 472 eruption of the Somma volcano, J. Volcanol. Geotherm. Res., 129, 291–319. Rosi, M., C. Principe, and R. Vecci (1993), The 1631 Vesuvius eruption. A reconstruction based on historical and stratigraphical data, J. Volcanol. Geotherm. Res., 58, 151–182. Rossano, S., G. Mastrolorenzo, G. De Natale, and F. Pingue (1996), Computer simulation of pyroclastic flow movement: An inverse approach, Geophys. Res. Lett., 23(25), 3779–3782, doi:10.1029/96GL03570. Rossano, S., G. Mastrolorenzo, and G. De Natale (1998), Computer simulations of pyroclastic flows on Somma‐Vesuvius volcano, J. Volcanol. Geotherm. Res., 82, 113–137. Rossano, S., G. Mastrolorenzo, and G. De Natale (2004), Numerical simulation of pyroclastic density currents on Campi Flegrei topography: A tool for statistical hazard estimation, J. Volcanol. Geotherm. Res., 132, 1–14. Rouse, H. (1937), Modern conceptions of the mechanics of fluid turbulence, Trans. Am. Soc. Civ. Eng., 102, 463–523. Royal Society (1992), Risk: Analysis, Perception and Management, Report of a Royal Society Study Group, London. Scandone, R., F. Iannone, and G. Mastrolorenzo (1986), Stima dei Parametri Dinamici dell’Eruzione del 1944 del Vesuvio, Boll. Gruppo Naz. Vulcanol., 2, 487–503. Sheridan, M. F. (1979), Emplacement of pyroclastic flow: A review, Spec. Pap. Geol. Soc. Am., 180, 125–136. Sheridan, M. F. (1994), From models to reality, Nature, 367, 514. Sheridan, M. F., and M. C. Malin (1983), Application of computer‐assisted mapping to volcanic hazard evaluation of surge eruption: Vulcano, Lipari, and Vesuvius, J. Volcanol. Geotherm. Res., 17, 187–202. Sheridan, M. F., A. J. Stinton, A. K. Patra, E. B. Pitman, A. Bauer, and C. C. Nichita (2005), Evaluating Titan 2D mass‐flow model using the 1963 Little Tahoma Peak avalanches, Mount Rainier, Washington, J. Volcanol. Geotherm. Res., 139, 89–102, doi:10.1016/j.jvolgeores. 2004.06.011. Sigurdsson, H., S. Carey, W. Cornell, and T. Pescatore (1985), The eruption of Vesuvius in A.D. 79, Natl. Geogr. Res., 1, 332–387. Sulpizio, R., D. Mele, P. Dellino, and L. La Volpe (2005), A complex, sub‐ Plinian‐type eruption from low‐viscosity, phonolitic to tephri‐phonolitic magma: The AD 472 (Pollena) eruption of Somma‐Vesuvius, Italy, Bull. Volcanol., 67, 743–767, doi:10.1007/s00445-005-0414-x. Suzuki, T. (1983), A theoretical model for dispersion of tephra, in Arc Volcanism: Physics and Tectonics, edited by D. Shimozuru and I. Yokoyama, pp. 95–113, Terra Sci., Tokyo. Tilling, R. I. (2005), Volcano hazards, in Volcanoes and the Environment, edited by J. Marti and G. Ernst, pp. 55–89, Cambridge Univ. Press, Cambridge, U. K. Todesco, M., A. Neri, T. Esposti Ongaro, P. Papale, G. Macedonio, R. Santacroce, and A. Longo (2002), Pyroclastic flow hazard assessment at Vesuvius (Italy) by using numerical flow modelling. 1. Large‐scale dynamics, Bull. Volcanol., 64, 155–177. United Nations Disaster Relief Coordinator (UNDRO) (1979), Natural disasters and vulnerability analysis in report of expert group meeting (9–12 July 1979), 49 pp., Geneva. Valentine, G. A. (1987), Stratified flow in pyroclastic surges, Bull. Volcanol., 49, 616–630. Valentine, G. A. (1998), Damage to structures by pyroclastic flows and surges, inferred from nuclear weapons effects, J. Volcanol. Geotherm. Res., 87, 117–140. Valentine, G. A., and K. H. Wohletz (1989a), Numerical models of Plinian eruption columns and pyroclastic flows, J. Geophys. Res., 94(B2), 1867–1887. Valentine, G. A., and K. H. Wohletz (1989b), Environmental hazard of pyroclastic flows determined by numerical models, Geology, 17, 641–644. Valentine, G. A., K. H. Wohletz, and S. Kieffer (1992), Effects of topography on facies and compositional variation in caldera relate ignimbrite, Geol. Soc. Am. Bull., 104, 154–165. Walker, G. P. L. (1981), Plinian eruptions and their products, Bull. Volcanol., 44, 223–240. Wilson, L., R. S. J. Sparks, and G. P. L. Walker (1980), Explosive volcanic eruptions: IV. The control of magma properties and conduit geometry on eretzuption column behavior, J. R. Astron. Soc., 63, 117–148. Wohletz, K., and M. F. Sheridan (1979), A model of pyroclastic surge, in Ash‐Flow Tuffs, edited by C. E. Chapin and W. E. Elson, Spec. Pap. Geol. Soc. Am., 180, 177–194. Woods, A. W. (1988), The fluid dynamics and thermodynamics of eruption columns, Bull. Volcanol., 50, 169–193. Zanchetta, G., R. Sulpizio, and M. A. Di Vito (2004), The role of volcanic activity and climate in alluvial fan growth at volcanic areas: An example from southern Campania (Italy), Sediment. Geol., 168, 249–280. Zuccaro, G., F. Cacace, R. J. S. Spence, and P. J. Baxter (2008), Impact of explosive eruption scenarios at Vesuvius, J. Volcanol. Geotherm. Res., 178, 416–453, doi:10.1016/j.jvolgeores.2008.01.005.en
dc.description.obiettivoSpecifico4.3. TTC - Scenari di pericolosità vulcanicaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorMastrolorenzo, G.en
dc.contributor.authorPappalardo, L.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0002-2578-541X-
crisitem.author.orcid0000-0002-9187-252X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2009JB006871hazardvesuvius.pdf18.71 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 10

4
checked on Feb 10, 2021

Page view(s) 50

401
checked on Mar 27, 2024

Download(s)

41
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric