Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6677
DC FieldValueLanguage
dc.contributor.authorallCosta, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallFolch, A.; Barcelona Supercomputing Center, Barcelona, Spainen
dc.contributor.authorallMacedonio, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2011-01-14T14:31:40Zen
dc.date.available2011-01-14T14:31:40Zen
dc.date.issued2010en
dc.identifier.urihttp://hdl.handle.net/2122/6677en
dc.description.abstractWe develop a model to describe ash aggregates in a volcanic plume. The model is based on a solution of the classical Smoluchowski equation, obtained by introducing a similarity variable and a fractal relationship for the number of primary particles in an aggregate. The considered collision frequency function accounts for different mechanisms of aggregation, such as Brownian motion, ambient fluid shear, and differential sedimentation. Although model formulation is general, here only sticking efficiency related to the presence of water is considered. However, the different binding effect of liquid water and ice is discerned. The proposed approach represents a first compromise between the full description of the aggregation process and the need to decrease the computational time necessary for solving the full Smoluchowski equation. We also perform a parametric study on the main model parameters and estimate coagulation kernels and timescales of the aggregation process under simplified conditions of interest in volcanology. Further analyses and applications to real eruptions are presented in the companion paper by Folch et al.en
dc.language.isoEnglishen
dc.publisher.nameAMER GEOPHYSICAL UNIONen
dc.relation.ispartofJournal of Geophysical Researchen
dc.relation.ispartofseries/115(2010)en
dc.subjectvolcanicen
dc.subjectTheoretical formulationen
dc.titleA model for wet aggregation of ash particles in volcanic plumes and clouds: 1. Theoretical formulationen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB09201en
dc.subject.INGV01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamicsen
dc.subject.INGV01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effectsen
dc.identifier.doi10.1029/2009JB007175en
dc.relation.referencesArastoopour, H., S. Lin, and S. Weil (1982), Analysis of vertical pneumatic conveying of solids using multiphase flow models, AIChE J., 28, 467–473, doi:10.1002/aic.690280315. Armienti, P., G. Macedonio, and M. Pareschi (1988), A numerical model for simulation of tephra transport and deposition: Applications to May 18, 1980, Mount St. Helens eruption, J. Geophys. Res., 93, 6463–6476, doi:10.1029/JB093iB06p06463. Barnocky, G., and R. Davis (1988), Elastohydrodynamic collision and rebound of spheres: Experimental verification, Phys. Fluids, 31, 1324–1329, doi:10.1063/1.866725. Baxter, P. (1999), Impacts of eruptions on human health, in Encyclopedia of Volcanoes, edited by H. Sigurdsson et al., pp. 1035–1043, Academic, San Diego, Calif. Blong, R. (1984), Volcanic Hazards: A Sourcebook on the Effects of Eruptions, Academic, North Ryde, N. S. W., Australia. Bonadonna, C., G. Macedonio, and R. Sparks (2002), Numerical modelling of tephra fallout associated with dome collapses and Vulcanian explosions: application to hazard assessment on Montserrat, in The Eruption of Soufriére Hills Volcano, Montserrat, From 1995 to 1999, edited by T. Druitt and B. Kokelaar, pp. 517–537, Geol. Soc., London. Brown, R., M. Branney, C. Maher, and P. Davila‐Harris (2010), Origin of accretionary lapilli within ground‐hugging density currents: Evidence from pyroclastic couplets on Tenerife, Geol. Soc. Am. Bull., 122, 305–320, doi:10.1130/B26449.1. Burd, A., and G. Jackson (2009), Particle aggregation, Annu. Rev. Mater. Sci., 1, 65–90, doi:10.1146/annurev.marine.010908.163904. Carey, S., and H. Sigurdsson (1982), Influence of particle aggregation on deposition of distal tephra from the May 18, 1980, eruption of Mount St. Helens volcano, J. Geophys. Res., 87(B8), 7061–7072, doi:10.1029/ JB087iB08p07061. Casadevall, T. (1994), The 1989–1990 eruption of Redoubt Volcano, Alaska: Impacts on aircraft operations, J. Volcanol. Geotherm. Res., 62, 301–316, doi:10.1016/0377-0273(94)90038-8. Casadevall, T., P. Delos Reyes, and D. Schneider (1996), The 1991 Pinatubo eruptions and their effects on aircraft operations, in Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines, edited by C. Newhall and R. Punongbayan, pp. 625–636, Univ. of Wash. Press, Seattle. Cornell, W., S. Carey, and H. Sigurdsson (1983), Computer simulation and transport of the Campanian Y‐5 ash, J. Volcanol. Geotherm. Res., 17, 89–109, doi:10.1016/0377-0273(83)90063-X. Costa, A., G. Macedonio, and A. Folch (2006),A three‐dimensional Eulerian model for transport and deposition of volcanic ashes, Earth Planet. Sci. Lett., 241, 634–647, doi:10.1016/j.epsl.2005.11.019. Costa, A., F. Dell’Erba, M. Di Vito, R. Isaia, G. Macedonio, G. Orsi, and T. Pfeiffer (2009), Tephra fallout hazard assessment at the Campi Flegrei caldera (Italy), Bull. Volcanol., 71, 259–273, doi:10.1007/s00445-008- 0220-3. Dekkers, P., and S. Friedlander (2002), The self‐preserving size distribution theory: I. Effects of the Knudsen number on aerosol agglomerate growth, J. Colloid Interface Sci., 248, 295–305, doi:10.1006/jcis. 2002.8212. Dekkers, P., I. Tuinman, J. Marijnissen, S. Friedlander, and B. Scarlett (2002), The self‐preserving size distribution theory: II. Comparison with experimental results for Si and Si3N4 aerosols, J. Colloid Interface Sci., 248, 306–314, doi:10.1006/jcis.2002.8213. Di Stasio, S., A. Konstandopoulos, and M. Kostoglou (2002), Clustercluster aggregation kinetics and primary particle growth of soot nanoparticles in flame by light scattering and numerical simulations, J. Colloid Interface Sci., 247, 33–46, doi:10.1006/jcis.2001.8095. Durant, A., and W. Rose (2009), Sedimentological constraints on hydrometeor‐enhanced particle deposition: 1992 eruptions of Crater Peak, Alaska, J. Volcanol. Geotherm. Res., 186, 40–59, doi:10.1016/j.jvolgeores. 2009.02.004. Durant, A., R. Shaw, W. Rose, Y. Mi, and G. Ernst (2008), Ice nucleation and overseeding of ice in volcanic clouds, J. Geophys. Res., 113, D09206, doi:10.1029/2007JD009064. Durant, A., W. Rose, A. Sarna‐Wojcicki, S. Carey, and A. Volentik (2009), Hydrometeor‐enhanced tephra sedimentation: Constraints from the 18 May 1980 eruption of Mount St. Helens, J. Geophys. Res., 114, B03204, doi:10.1029/2008JB005756. Field, P., A. Heymsfield, and A. Bansemer (2006), A test of ice self‐collection kernel using aircraft data, J. Atmos. Sci., 63, 651–666, doi:10.1175/ JAS3653.1. (Corrigendum, J. Atmos. Sci., 63, 1674, 2006.)Folch, A., C. Cavazzoni, A. Costa, and G. Macedonio (2008), An automatic procedure to forecast tephra fallout, J. Volcanol. Geotherm. Res., 177, 767–777, doi:10.1016/j.jvolgeores.2008.01.046. Folch, A., A. Costa, and G. Macedonio (2009), FALL3D: A computational model for transport and deposition of volcanic ash, Comput. Geosci., 35, 1334–1342, doi:10.1016/j.cageo.2008.08.008. Folch, A., A. Costa, A. Durant, and G. Macedonio (2010), A model for wet aggregation of ash particles in volcanic plumes and clouds: 2. Model application, J. Geophys. Res., 115, B09202, doi:10.1029/2009JB007176. Frenklach, M. (2002), Method of moments with interpolative closure, Chem. Eng. Sci., 57, 2229–2239, doi:10.1016/S0009-2509(02)00113-6. Gilbert, J., and S. Lane (1994), The origin of accretionary lapilli, Bull. Volcanol., 56, 398–411. Glaze, L., and S. Self (1991), Ashfall dispersal for the 16 September 1986 eruption of Lascar, Chile, calculated by a turbulent diffusion model, Geophys. Res. Lett., 18, 1237–1240, doi:10.1029/91GL01501. Gmachowski, L. (1995), Mechanism of shear aggregation, Water Res., 29, 1815–1820, doi:10.1016/0043-1354(95)00006-7. Gmachowski, L. (2001), Self‐preserving aggregate size distribution, Chem. Ing. Tech., 73, 87–89, doi:10.1002/1522-2640(200101)73:1/2<87::AIDCITE87> 3.0.CO;2-B. Jacobson, M. (1999), Fundamentals of Atmospheric Modelling, 1st ed., Cambridge Univ. Press, New York. James, M., J. S. Gilbert, and S. J. Lane (2002), Experimental investigation of volcanic particle aggregation in the absence of a liquid phase, J. Geophys. Res., 107(B9), 2191, doi:10.1029/2001JB000950. James, M. R., S. J. Lane, and J. S. Gilbert (2003), Density, construction, and drag coefficient of electrostatic volcanic ash aggregates, J. Geophys. Res., 108(B9), 2435, doi:10.1029/2002JB002011. Jiang, Q., and B. Logan (1991), Fractal dimensions of aggregates determined from steady state size distributions, Environ. Sci. Technol., 25, 2031–2038, doi:10.1021/es00024a007. Johnson, C., X. Li, and B. Logan (1996), Settling velocities of fractal aggregates, Environ. Sci. Technol., 30, 1911–1918, doi:10.1021/es950604g. Jullien, R., and R. Botet (1987), Aggregation and Fractal Aggregates, World Sci., Singapore. Jun, F., S. Xueming, Y. Hongyong, and Z. Xin (2004), Self‐preserving size distribution of fire soot fractal coagulation in flaming combustion, J. Fire Sci., 22, 53–68, doi:10.1177/0734904104039250. Lee, C., and T. Kramer (2004), Prediction of three‐dimensional fractal dimensions using the two‐dimensional properties of fractal aggregates, Adv. Colloid Interface Sci., 112, 49–57, doi:10.1016/j.cis.2004.07.001. Li, X., and B. Logan (2001), Settling velocities of fractal aggregates, Water Res., 35, 3373–3380, doi:10.1016/S0043-1354(01)00061-6. Li, X., U. Passow, and B. Logan (1998), Fractal dimensions of small (15– 200 mm) particles in eastern Pacific coastal waters, Deep Sea Res., Part I, 45, 115–131, doi:10.1016/S0967-0637(97)00058-7. Liu, L. X., and J. D. Litster (2002), Population balance modelling of granulation with a physically based coalescence kernel, Chem. Eng. Sci., 57, 2183–2191, doi:10.1016/S0009-2509(02)00110-0. Macedonio, G., A. Costa, and A. Folch (2008), Ash fallout scenarios at Vesuvius: Numerical simulations and implications for hazard assessment, J. Volcanol. Geotherm. Res., 178, 366–377, doi:10.1016/j.jvolgeores. 2008.08.014. Pfeiffer, T., A. Costa, and G. Macedonio (2005), A model for the numerical simulation of tephra fall deposits, J. Volcanol. Geotherm. Res., 140, 273–294, doi:10.1016/j.jvolgeores.2004.09.001. Pomonis, A., R. Spence, and P. Baxter (1999), Risk assessment of residential buildings for an eruption of Furnas Volcano, Sao Miguel, the Azores, J. Volcanol. Geotherm. Res., 92, 107–131, doi:10.1016/ S0377-0273(99)00071-2.Rose, W., and A. Durant (2009), Fine ash content of explosive eruptions, J. Volcanol. Geotherm. Res., 186, 32–39, doi:10.1016/j.jvolgeores. 2009.01.010. Rose, W., C. Riley, L. Henderson, R. McGimsey, G. Bluth, D. Schneider, and G. Ernst (2001), Observations of volcanic clouds in their first few days of atmospheric residence: The 1992 eruptions of Crater Peak, Mount Spurr Volcano, Alaska, J. Geol., 109, 677–694, doi:10.1086/ 323189. Rose, W., C. Riley, and S. Dartvelle (2003), Sizes and shapes of 10‐Ma distal fall pyroclasts in the Ogallala Group, Nebraska, J. Geol., 111, 115–124, doi:10.1086/344668. Schumacher, R., and H. Schmincke (1995), Models for the origin of accretionary lapilli, Bull. Volcanol., 56, 626–639. Smoluchowski, M. (1917), Veruch einer mathematischen Theorie der Koagulationkinetic kolloider Lösungen, Z. Phys. Chem., 92, 128–168. Sparks, R., M. Bursik, S. Carey, J. Gilbert, L. Glaze, H. Sigurdsson, and A. Woods (1997), Volcanic Plumes, John Wiley, Chichester, U. K. Spence, R., I. Kelman, P. Baxter, G. Zuccaro, and S. Petrazzuoli (2005), Residential building and occupant vulnerability to tephra fall, Nat. Hazards Earth Syst. Sci., 5, 477–494, doi:10.5194/nhess-5-477-2005. Suzuki, T. (1983), A theoretical model for dispersion of tephra, in Arc Volcanism: Physics and Tectonics, edited by D. Shimozuru and I. Yokoyama, pp. 93–113, Terra Sci., Tokyo. Textor, C., H. Graf, M. Herzog, J. Oberhuber, W. Rose, and G. Ernst (2006a), Volcanic particle aggregation in explosive eruption columns. Part I: Parameterization of the microphysics of hydrometeors and ash, J. Volcanol. Geotherm. Res., 150, 359–377, doi:10.1016/j.jvolgeores. 2005.09.007. Textor, C., H. Graf, M. Herzog, J. Oberhuber, W. Rose, and G. Ernst (2006b), Volcanic particle aggregation in explosive eruption columns. Part II: Numerical experiments, J. Volcanol. Geotherm. Res., 150, 378–394, doi:10.1016/j.jvolgeores.2005.09.008. Tian, W., T. Nakayama, J. Huang, and K. Yu (2007), Scaling behaviours in settling process of fractal aggregates in water, Europhys. Lett., 78, 46001, doi:10.1209/0295-5075/78/46001. Tirado‐Miranda, M., A. Schmitt, J. Callejas‐Fernandez, and A. Fernandez‐ Barbero (2000), Dynamic scaling and fractal structure of small colloidal clusters, Colloids Surfaces A, 162, 67–73, doi:10.1016/S0927-7757(99) 00216-2. Veitch, G., and A. Woods (2001), Particle aggregation in volcanic eruption columns, J. Geophys. Res., 106, 26,425–26,441, doi:10.1029/ 2000JB900343. Vicsek, T. (1992), Fractal Growth Phenomena, 2nd ed., World Sci, Singapore. Voivret, C., F. Radjaï, J. Delenne, and M. El Youssoufi (2007), Spacefilling properties of polydisperse granular media, Phys. Rev. E, 76, 021301, doi:10.1103/PhysRevE.76.021301. Walker, G., G. Andrew, and D. Jones (2006), Effect of process parameters on the melt granulation of pharmaceutical powders, Powder Technol., 165, 161–166, doi:10.1016/j.powtec.2006.03.024. Westbrook, C., R. Ball, P. Field, and A. Heymsfield (2004), Theory of growth by differential sedimentation, with application to snowflake formation, Phys. Rev. E, 70, 021403, doi:10.1103/PhysRevE.70.021403.en
dc.description.obiettivoSpecifico3.6. Fisica del vulcanismoen
dc.description.obiettivoSpecifico4.3. TTC - Scenari di pericolosità vulcanicaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorCosta, A.en
dc.contributor.authorFolch, A.en
dc.contributor.authorMacedonio, G.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentBarcelona Supercomputing Center, Barcelona, Spainen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptBarcelona Supercomputing Center, Barcelona, Spain-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0002-4987-6471-
crisitem.author.orcid0000-0002-0677-6366-
crisitem.author.orcid0000-0001-6604-1479-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent01. Atmosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
CosFol-10.pdf819.77 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

72
checked on Feb 10, 2021

Page view(s) 20

277
checked on Apr 20, 2024

Download(s)

28
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric