Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorallStanislawska, I.; Space Research Centre, PAS, Warsaw, Poland.en
dc.contributor.authorallLastovicka, J.; Institute of Atmospheric Physics, Prague, Czech Republic.en
dc.contributor.authorallBourdillon, A.; IETR, University of Rennes 1, Rennes, France.en
dc.contributor.authorallZolesi, B.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallCander, Lj. R.; Rutherford Appleton Laboratory, Didcot, UK.en
dc.description.abstractThe Mitigation of Ionospheric Effects on Radio Systems COST 296 Action is devoted to the mitigation of ionospheric effects on radio systems. It creates a platform for sharing of data, algorithms, models, and jointly developed advanced technologies, the processing chain from measurements, through algorithms, to operational knowledge. This initiative creates a unique possibility for national groups to consolidate the design of a product required for their own activity and for European assessments in the ionosphere and telecommunication area. An important part of the action is to stimulate and integrate many national and international activities which provide tools for global and regional ionospheric monitoring and modeling. The work includes the near-Earth space plasma monitoring, modeling and forecasting, and a study of the upper atmosphere climate. Well-defined terms of reference include developing ground-based and space-borne monitoring techniques and parameters describing the state of ionospheric plasma, maintaining and extending the flow of real-time and retrospective ionospheric monitoring data to databases. To obtain adequate, high-quality information, special attention is paid to the data ingestion and assimilation in constructing ionospheric models of different spatial and time scale perturbations, as well as storms, small variations, and irregularities. The physical origin of atmospheric/ionospheric effects and their signatures and parameters are investigated. Identification criteria are studied and formulated.en
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofSpace Weatheren
dc.relation.ispartofseries/ 8 (2010)en
dc.subjectMonitoring and modellingen
dc.subjectSpace weatheren
dc.subjectRadiocommunication and navigationen
dc.titleMonitoring and modeling of ionospheric characteristics in the framework of European COST 296 Action MIERSen
dc.subject.INGV01. Atmosphere::01.02. Ionosphere::01.02.03. Forecastsen
dc.subject.INGV01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagationen
dc.relation.referencesAngling, M. J., and B. Khattatov (2006), Comparative study of two assimilative models of the ionosphere, Radio Sci., 41, RS5S20, doi:10.1029/2005RS003372. Belehaki, A., P. Marinov, I. Kutiev, N. Jakowski, and S. Stankov (2006), Comparison of the topside ionosphere scale height determined by topside sounders model and bottomside Digisonde profiles, Adv. Space Res., 37(5), 963-- 966, doi:10.1016/j.asr.2005.09.014. Bradley, P. A. (1995), PRIME (Prediction and Retrospective Ionospheric Modelling over Europe), COST Action 238 Final Rep. Adv. Issue, Comm. of the Eur. Communities, Brussels.Bremer, J., L. R. Cander, J. Mielich, and R. Stamper (2006), Derivation and test of ionospheric activity indices from real-time ionosonde observations in the European region, J. Atmos. Sol. Terr. Phys., 68(18), 2075-- 2090, doi:10.1016/j.jastp.2006.07.003. Cander, L. R. (2008), Ionospheric research and space weather services, J. Atmos. Sol. Terr. Phys., 70(15), 1870 -- 1878, doi:10.1016/ j.jastp.2008.05.010. Fotiadis, D. N., and S. S. Kouris (2006), A functional dependence of foF2 variability on latitude, Adv. Space Res., 37(5), 1023-- 1028, doi:10.1016/j.asr.2005.02.054. Gulyaeva, T. L. (2007), Variable coupling between the bottomside and topside thickness of the ionosphere, J. Atmos. Sol. Terr. Phys., 69(4 -- 5), 528-- 536, doi:10.1016/j.jastp.2006.10.015. Gulyaeva, T. L., and I. Stanislawska (2008), Derivation of a planetary ionospheric storm index, Ann. Geophys., 26, 2649-- 2655. Hanbaba, R. (1999), Improved quality of service in ionospheric telecommunication systems planning and operation, COST 251 Final Rep., Space Res. Cent., Warsaw. Herna´ndez-Pajares, M., J. M. Juan, and J. Sanz (2006), Medium-scale traveling ionospheric disturbances affecting GPS measurements: Spatial and temporal analysis, J. Geophys. Res., 111, A07S11, doi:10.1029/2005JA011474. Jakowski, N., et al. (2008), Ionospheric behavior over Europe during the solar eclipse of 3 October 2005, J. Atmos. Sol. Terr. Phys., 70(6), 836-- 853, doi:10.1016/j.jastp.2007.02.016. Kouris, S. S., K. Polimeris, and L. Cander (2006), Specifications of TEC variability, Adv. Space Res., 37(5), 983 -- 1004, doi:10.1016/ j.asr.2005.01.102. Krankowski, A., and I. I. Shagimuratov (2006), Impact of TEC fluctuations in the Antarctic ionosphere on GPS positioning accuracy, Artif. Satell., 41(1), 43-- 56, doi:10.2478/v10018-007-0005-5. Lastovicka, J., R. A. Akmaev, G. Beig, J. Bremer, and J. T. Emmert (2006a), Global change in the upper atmosphere, Science, 314(5803), 1253-- 1254, doi:10.1126/science.1135134. Lastovicka, J., et al. (2006b), Long-term trends in foF2: A comparison of various methods, J. Atmos. Sol. Terr. Phys., 68(17), 1854-- 1870, doi:10.1016/j.jastp.2006.02.009. Mikhailov, A. V. (2006), Ionospheric long-term trends: Can the geomagnetic control and the greenhouse hypotheses be reconciled?, Ann. Geophys., 24(10), 2533-- 2541. Nava, B., S. M. Radicella, R. Leitinger, and P. Coý¨sson (2006), A nearreal- time model-assisted ionosphere electron density retrieval method, Radio Sci., 41, RS6S16, doi:10.1029/2005RS003386. Nava, B., P. Coý¨sson, and S. M. Radicella (2008), A new version of the NeQuick ionosphere electron density model, J. Atmos. Sol. Terr. Phys., 70(15), 1856-- 1862, doi:10.1016/j.jastp.2008.01.015. Perrone, L., M. Pietrella, and B. Zolesi (2007), A prediction model of foF2 over periods of severe geomagnetic activity, Adv. Space Res., 39(5), 674-- 680, doi:10.1016/j.asr.2006.08.008. Pezzopane, M., and C. Scotto (2008), A method for automatic scaling of F1 critical frequency from ionograms, Radio Sci., 43, RS2S91, doi:10.1029/2007RS003723. Pryse, S. E., L. Kersley, D. Malan, and G. J. Bishop (2006), Parameterization of the main ionospheric trough in the European sector, Radio Sci., 41, RS5S14, doi:10.1029/2005RS003364. Romano, V., S. Pau, M. Pezzopane, E. Zuccheretti, B. Zolesi, G. De Franceschi, and S. Locatelli (2008), The electronic space weather upper atmosphere (eSWua) project at INGV: Advancements and state of the art, Ann. Geophys., 26, 345-- 351. Stanislawska, I., et al. (2009), COST 296 scientific results designed for operational use: COST 296 final report, Ann. Geophys., 52(3 -- 4), 215-- 227. Stankov, S. M., and N. Jakowski (2006), Topside ionospheric scale height analysis and modelling based on radio occultation measurements, J. Atmos. Sol. Terr. Phys., 68(2), 134 -- 162, doi:10.1016/ j.jastp.2005.10.003. Stolle, C., S. Schlu¨ ter, S. Heise, C. Jacobi, N. Jakowski, and A. Raabe (2006), A GPS based three-dimensional ionospheric imaging tool: Process and assessment, Adv. Space Res., 38(11), 2313-- 2317, doi:10.1016/j.asr.2006.05.016. Tulunay, E., E. T. Senalp, S. M. Radicella, and Y. Tulunay (2006), Forecasting total electron content maps by neural network technique, Radio Sci., 41, RS4016, doi:10.1029/2005RS003285. Zolesi, B., and L. R. Cander (2004), COST 271 Action---Effects of the upper atmosphere on terrestrial and Earth-space communications: Introduction, Ann. Geophys., 47(2 -- 3), 915-- 925.en
dc.description.obiettivoSpecifico1.7. Osservazioni di alta e media atmosferaen
dc.description.obiettivoSpecifico3.9. Fisica della magnetosfera, ionosfera e meteorologia spazialeen
dc.description.journalTypeJCR Journalen
dc.contributor.authorStanislawska, I.en
dc.contributor.authorLastovicka, J.en
dc.contributor.authorBourdillon, A.en
dc.contributor.authorZolesi, B.en
dc.contributor.authorCander, Lj. R.en
dc.contributor.departmentSpace Research Centre, PAS, Warsaw, Poland.en
dc.contributor.departmentInstitute of Atmospheric Physics, Prague, Czech Republic.en
dc.contributor.departmentIETR, University of Rennes 1, Rennes, France.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentRutherford Appleton Laboratory, Didcot, UK.en
item.fulltextWith Fulltext-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent01. Atmosphere- Research Centre, Polish Academy of Sciences, Warsaw, Poland- of Atmospheric Physics, Prague, Czech Repubilc- d’Electronique et de Te´ le´communications de Rennes (IETR), University of Rennes- Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia- Appleton Laboratory, Chilton, Didcot, Oxon, U.K.- Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Article_Space Weather.pdf323.6 kBAdobe PDF
Show simple item record

Citations 20

checked on Feb 10, 2021

Page view(s) 20

checked on May 18, 2024


checked on May 18, 2024

Google ScholarTM