Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6653
DC FieldValueLanguage
dc.contributor.authorallPappalardo, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallMastrolorenzo, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2011-01-14T08:16:32Zen
dc.date.available2011-01-14T08:16:32Zen
dc.date.issued2010en
dc.identifier.urihttp://hdl.handle.net/2122/6653en
dc.description.abstractIt is crucial to understand magma chamber chemico-physical conditions and residence times for high-risk volcanoes because these factors control the occurrence and size of future eruptions. In order to define magmatic pressure–temperature conditions and residence times at the Somma–Vesuvius volcano, we studied the geochemistry and texture of selected past eruptions that are representative of the entire volcanic history. Our petrological model indicates a multi-depth magma chamber composed of a deeper tephritic (350– 400 Mpa) magma layer, which fed Strombolian and effusive eruptions during open-conduit activity, and an upper (200–250 Mpa) phonolitic level, which supplied the high explosive events that followed closedconduit repose time. This upper reservoir matches the inferred transition between sedimentary sequences and metamorphic basement. At this level, the presence of a structural and lithological discontinuity favors magma storage during closed-conduit periods. The prevalent differentiation process was fractional crystallization during the magma cooling associated with upward migration of less dense, evolved liquids. Our results indicate that major steam exolution occurred during the late crystallization stage of phonolites, which accounts for the high Volcanic Explosivity Index (VEI) of eruptions supplied by these melts. Moreover, our phenocryst CSD data reveal the rapid crystallization and differentiation (decades to centuries) of alkaline Somma–Vesuvius magmas. This implies that the 400 km2 partial melting zone detected by tomography studies at 8–10 km depth beneath Vesuvius should consist of differentiated magma that is already capable of generating a large-scale (plinian) explosive event if renewed activity develops out of the present closed-conduit state. Additionally, because our microlite CSD data indicate rapid magma migration from the chamber toward the surface, precursory activity could appear only short time before a major eruption.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofEarth and Planetary Science Lettersen
dc.relation.ispartofseries/296 (2010)en
dc.subjectresidence timeen
dc.subjectphonoliteen
dc.subjectVesuviusen
dc.titleShort residence times for alkaline Vesuvius magmas in a multi-depth supply system: Evidence from geochemical and textural studiesen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber133–143en
dc.subject.INGV04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocksen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrologyen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistryen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.10. Stratigraphyen
dc.identifier.doi10.1016/j.epsl.2010.05.010en
dc.relation.referencesAppleton, J.D., 1972. Petrogenesis of potassium rich lavas from the Roccamonfina volcano Roman Region, Italy. J. Petrol. 13, 425–456. Armienti, P., Francalanci, L., Landi, P., 2007. Textural effects of steady state behavior of the Stromboli feeding system. J. Volcanol. Geoth. Res. 160 (1–2), 86–98. Auger, E., Gasparini, P., Virieux, J., Zollo, A., 2001. Seismic evidence of an extended magmatic sill under Mt. Vesuvius. Science 294, 1510–1512. Berrino, G., Corrado, G., Riccardi, U., 1998. Sea gravity data in the Gulf of Naples: a contribution to delineating the structural pattern of the Vesuvian area. J. Volcanol. Geoth. Res. 82, 139–150. Bianco, F., Castellano, M., Milano, G., Ventura, G., Vilardo, G., 1998. The Somma– Vesuvius stress-field induced by regional tectonic: evidences from seismological and mesostructural data. J. Volcanol. Geoth. Res. 82, 199–218. Blundy, J., Cashman, K., 2008. Petrologic reconstruction of magmatic system variables and processes. Rev. Mineralog. Geochem. 69-1, 179–239. Boudreau, A.E., 1999. PELE - A version of the MELTS software program for the PC platform. Computers and Geosciences 25, 21–203. Brocchini, D.C., Principe, D., Castradori, M., Laurenzi, A., Gorla, L., 2001. Quaternary evolution of the southern sector of the Campanian Plain and early Somma– Vesuvius activity: insights from the Trecase 1 well. Miner. Petrol. 73, 67–91. Calzolaio, M., Arzilli, F., Carroll, M.R., Piochi, M., 2008. Study of the growth rate in decompression-induced experiments of alkali feldspars in trachytic melts of Phlegrean Fields (Napoli, Italy). Congresso Società Italiana di Mineralogia e Petrologia (SIMP) e Associazione Italiana di Cristallografia (AIC), Sestri Levante (GE, Italy), il 9 settembre 2008. Carroll, M.R., 2005. Chlorine solubility in evolved alkaline magmas. Ann. Geophys. 48, 619–631. Carroll, M.R., Blank, J., 1997. Solubility of water in phonolitic melts. Am. Mineralog. 82, 1111–1115. Cashman, K.V., Marsh, B.D., 1988. Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization II: Makaopuhi lava lake. Contrib. Mineralog. Petrol. 99, 292–305. Cashman, K.V., 1993. Relationship between plagioclase crystallization and cooling rate in basaltic melts. Contrib. Mineralog. Petrol. 113, 126–142. Cioni, R., 2000. Volatile content and degassing processes in the ad 79 magma chamber at Vesuvius (Italy). Contrib. Mineralog. Petrol. 140, 40–54. Couch, S., 2003. Experimental investigation of crystallization kinetics in a haplogranite system. Am. Mineralog. 88, 1471–1485. De Natale, G., Troise, C., Pingue, F., Mastrolorenzo, G., Pappalardo, L., 2006. The Somma– Vesuvius volcano (Southern Italy): structure, dynamics and hazard evaluation. Earth Sci. Rev. 74, 73–111. Di Renzo, V., Di Vito, M.A., Arienzo, I., Carandente, A., Civetta, L., D'antonio, M., Giordano, F., Orsi, G., Tonarini, S., 2007. Magmatic history of Somma–Vesuvius on the basis of new geochemical and isotopic data from a deep borehole (Camaldoli della Torre). J. Petrol. 48 (4), 753–784. Eberl, D.D., Kile, D.E., Drits, V.A., 2002. On geological interpretations of crystal size distributions: constant vs. proportionate growth. Am. Mineralog. 87, 1235–1241. Fabbrizio, A., Schmidt, M.W., Günther, D., Eikenberg, J., 2008. Experimental determination of radium partitioning between leucite and phonolite melt and 226Ra crystallization ages of leucite. Chem. Geol. 255, 377–387. Fowler, S.J., Spera, F.J., Bohrson, W.A., Belkin, H.E., De Vivo, B., 2007. Phase equilibria constraints on the chemical and physical evolution of the Campanian ignimbrite. J. Petrol. 48, 459–493. Fulignati, P., Marianelli, P., 2007. Tracing volatile exsolution within the 472 ad 'Pollena' magma chamber of Vesuvius (Italy) from melt inclusion investigation. J. Volcanol. Geoth. Res. 161, 289–302. Geschwind, C.H., Rutherford, M.J., 1995. Crystallization of microlites during magma ascent: the fluid mechanism of 1980–1986 eruption at Mount St Helens. Bull. Volcanol. 57, 356–370. Ghiorso, M.S., Sack, R.O., 1995. Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib. Mineralog. Petrol. 119, 197–212. Gualda, G.A.R., 2006. Crystal size distributions derived from 3D datasets: sample size versus uncertainties. J. Petrol. 47, 1245–1254. Hammer, E., Cashman, K.V., Hoblit, R.P., Newman, S., 1999. Degassing and microlite crystallization during pre-climatic events of the 1991 eruption of Mt. Pinatubo, Philippines. Bull. Volcanol. 60, 355–380. Hammer, J.E., Rutherford, M.J., 2002. Magma storage prior to the 1912 eruption at Novarupta, Alaska. Contrib. Mineralog. Petrol. 144, 144–162. Hammer, J.E., Cashman, K.V.,Voight, B., 2000.Magmatic processes revealed by textural and compositional trends in Merapi dome lavas. J. Volcanol. Geoth. Res. 100, 165–192. Higgins, M.D., 1996. Magma dynamics beneath Kameni volcano, Greece, as revealed by crystal size and shape measurements. J. Volcanol. Geoth. Res. 70, 37–48. Higgins, M.D., 2000. Measurement of crystal size distributions. Am. Mineralog. 85, 1105–1116. Higgins, M.D., 2002. Closure in crystal size distributions (CSD), verification of CSD calculations, and the significance of CSD fans. Am. Mineralog. 87, 171–175. Higgins, M.D., 2006. Quantitative Textural Measurements in Igneous and Metamorphic Petrology. Cambridge University Press, Cambridge. Higgins, M.D., Roberge, J., 2007. Three magmatic components in the 1973 eruption of Eldfell volcano, Iceland: evidence from plagioclase crystal size distribution (CSD) and geochemistry. J. Volcanol. Geoth. Res. 161, 247–260. Higgins, M.D., Meilleur, D., 2009. Development and emplacement of the Inyo Domes Magmatic Suite, California: evidence from geological, textural (CSD) and geochemical observations of ash and lava. Journal of Volcanology and Geothermal Research 186, 280–292. Houghton, B.F., Wilson, C.J.N., 1989. A vesicularity index for pyroclastic deposits. Bull. Volcanol. 51, 451–462. Improta, L., Corciulo, M., 2006. Controlled source nonlinear tomography: a powerful tool to constrain tectonic models of the Southern Apennines orogenic wedge, Italy. Geology 34, 941–944. Jerram, D.A., Higgins, M.D., 2007. 3D analysis of rock textures: quantifying igneous microstructures. Elements 3 (4), 239–245. Kirkpatrick, R.J., Klein, L., Uhlmann, D.R., Hays, J.F., 1979. Rates and processes of crystal growth in the system anorthite-albite. J. Geophys. Res. 84, 3671–3676. Larsen, J.F., 2005. Experimental study of plagioclase rim growth around anorthite seed crystals in rhyodacitic melt:. Am. Mineralog. 90, 417–427. Le Bas, M.J., Le Maitre, R.W., Streckheisen, A., Zanettin, B., 1986. Chemical classification of volcanic rocks based on the total alkali–silica diagram. J. Petrol. 27, 745–750. Lofgren, G., 1980. Experimental studies on the dynamic crystallization of silicate melts. In: Hargraves, R.B. (Ed.), Physics of Magmatic Processes. Princeton University Press, New York, pp. 487–565. Mangan, M.T., 1990. Crystal size distribution systematics and the determination of magma storage times: the 1959 eruption of Kilauea volcano, Hawaii. J. Volcanol. Geoth. Res. 44, 295–302. Marianelli, P., Sbrana, A., Metrich, N., Cecchetti, A., 2005. The deep feeding system of Vesuvius involved in the recent violent strombolian eruptions. Geophys. Res. Lett. 32. doi:10.1029/2004GL021667. Marsh, B., 1988. Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization I. Theory. Contrib. Mineralog. Petrol. 99, 277–291. Marsh, B.D., 1998. On the interpretation of crystal size distributions in magmatic systems. Journal of Petrology 39, 553–599. Martel, C., Schmidt, B.C., 2003. Decompression experiments as an insight into ascent rates of silicic magmas. Contrib. Mineralog. Petrol. 144, 397–415. Mastrolorenzo, G., Pappalardo, L., 2006. Magma degassing and crystallization processes during eruptions of high-risk Neapolitan volcanoes: evidence of common equilibrium rising processes in alkaline magmas. Earth Planet. Sci. Lett. 250, 164–181. Mastrolorenzo, G., Petrone, P., Pappalardo, L., Sheridan, M.F., 2006. The Avellino 3780- yr- B.P. catastrophe as a worst-case scenario for a future eruption at Vesuvius. PNAS 103 (12), 4366–4370. Mock, A., Jerram, D.A., 2005. Crystal size distributions (CSD) in three dimensions: insights from the 3D reconstruction of a highly porphyritic rhyolite. J. Petrol. 46, 1525–1541. Morgan, D.J., Blake, S. and Rogers, N.W., 2003. Crystallization rate and residence times of sanidine phenocrysts in the AD 472 (Pollena) eruption of Vesuvius. Geophysical Research Abstracts, Vol. 5, 09352, European Geophysical Society 2003. Morgan, J.S., Bohrson, W.A., Clynne, M.A., Ramos, F.C., Hoskin, P., 2008. Multiple plagioclase crystal populations identified by crystal size distribution and in situ chemical data: implications for timescales of magma chamber processes associated with the 1915 eruption of Lassen Peak, CA. J. Petrol. 49 (10), 1755–1780. Orlando, A., D'Orazio, M., Armienti, P., Borrini, D., 2008. Experimental determination of plagioclase and clinopyroxene crystal growth rates in an anhydrous trachybasalt from Mt Etna (Italy). Eur. J. Mineralog. 20 (4), 653–664. Pappalardo, L., Piochi, M., Mastrolorenzo, G., 2004. The 3800 yr BP–1944 AD magma plumbing system of Somma–Vesuvius: constraints on its behavior and present state through a review of isotope data. Ann Geophys. 47, 1471–1483. Pappalardo, L., Ottolini, L., Mastrolorenzo, G., 2008. The Campanian Ignimbrite (Southern Italy) geochemical zoning: insight on the generation of a super-eruption from catastrophic differentiation and fast withdrawal. Contrib. Mineralog. Petrol. 156, 1–26. Randolf, A.D., Larson, M.A., 1971. Theory of Particulate Processes. Academic Press, NewYork. Resmini, R.G., Marsh, B.D., 1995. Steady-state volcanism, paleoeffusion rates, and magma system volume inferred from plagioclase crystal size distributions in mafic lavas: Dome Mountain, Nevada. J. Volcanol. Geoth. Res. 68, 273–296. Scheibner, B., Wörner, G., Civetta, L., Stosc, H.G., Simon, K., Kronz, A., 2007. Rare earth element fractionation in magmatic Ca-rich garnets. Contrib. Mineralog. Petrol. 154, 55–74. Scheibner, B., Heumann, A., Wörner, G., Civetta, L., 2008. Crustal residence times of explosive phonolite magmas: U–Th ages of magmatic Ca-Garnets of Mt. Somma– Vesuvius (Italy). Earth Planet. Sci. Lett. 276 (3–4), 293–301. Signorelli, S., Carroll, M.R., 2000. Solubility and fluid-melt partitioning of Cl in hydrous phonolitic melts. Geochim. Cosmochim. Acta 64, 2851–2862. Webster, J.D., De Vivo, B., Tappen, C., 2003. Volatiles, magmatic degassing and eruptions of Mt. Somma–Vesuvius: constraints from silicate melt inclusions, solubility experiments and modeling. In: De Vivo, B., Bodnar, R.J. (Eds.), Melt Inclusions in Volcanic Systems: Methods, Applications and Problems. Developmens in Volcanology: Elsevier Book Series, vol. 5, pp. 207–226. Zieg, M.J., Lofgren, G.E., 2006. An experimental investigation of texture evolution during continuous cooling. J. Volcanol. Geoth. Res. 154, 74–88.en
dc.description.obiettivoSpecifico2.3. TTC - Laboratori di chimica e fisica delle rocceen
dc.description.obiettivoSpecifico3.5. Geologia e storia dei vulcani ed evoluzione dei magmien
dc.description.obiettivoSpecifico3.6. Fisica del vulcanismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorPappalardo, L.en
dc.contributor.authorMastrolorenzo, G.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0002-9187-252X-
crisitem.author.orcid0000-0002-2578-541X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
epslpappalardocomplete.pdf5.58 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

23
checked on Feb 10, 2021

Page view(s)

317
checked on Apr 17, 2024

Download(s)

30
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric