Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6519
DC FieldValueLanguage
dc.contributor.authorallMassa, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Milano-Pavia, Milano, Italiaen
dc.date.accessioned2011-01-11T10:24:06Zen
dc.date.available2011-01-11T10:24:06Zen
dc.date.issued2010-08-01en
dc.identifier.urihttp://hdl.handle.net/2122/6519en
dc.description.abstractThis work is focused on a procedure based on selecting suitable Empirical Green’s Functions (EGFs), able to predict ground-motion for moderate earthquakes, in the case where no records are available due to saturation phenomena. The aim of the paper is to generate synthetic seismograms for the 24th November 2004, ML 5.2, Salo’ earthquake (northern Italy), an event capable of saturating all velocimetric stations installed within the first 100 km from the epicenter. The proposed approach uses a waveform similarity analysis, based on the normalized cross correlation technique, and it is able to identify EGFs that represent doublet-events of a target. The ground-motion was finally simulated using the method proposed by Irikura (1986). In this case, due to the saturation of near-source velocimetric instruments, the normalized cross-correlation matrix was calculated considering the first not saturated velocimetric station (ASO2, 108 km NE to the epicenter), including the same selected portion of signals (on the base of signal-to-noise ratio) related both to the target and to 11 events, with ML ranging from 2.2 to 3.0, occurred in the same area. The similarity analysis, performed through the bridging technique, allows to detect an ML 2.9 aftershock characterized by a meaningful degree of similarity (70%) compared to the target. Given as a fact that if two events are similar for a far-field station they have to be similar also for a near source one, it was in this way possible to use the selected aftershock (doublet), recorded in near source, to reproduce the target for the saturated near-source stations. The results of the simulations were compared with ground-motion values predicted by empirical Ground Motion Prediction Equations (GMPEs), calibrated using both Italian and European data.en
dc.language.isoEnglishen
dc.relation.ispartofBulletin of Seismological Society of Americaen
dc.relation.ispartofseries4/100 (2010)en
dc.subjectcross-correlation analysisen
dc.subjectempirical Green’s functionsen
dc.titleSelection of Empirical Green’s Functions by waveform similarity analysis: an approach to predict ground-motion in areas with saturated recordsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1513–1527en
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methodsen
dc.identifier.doi10.1785/0120090296en
dc.relation.referencesAki K., 1969, Analysis of the seismic coda of local earthquakes as scattered waves, J. Geophys. Res., 74, n. 2, 615-631. Ambraseys, N.N., Douglas, J., Sarma, S.K. and Smit, P.M., 2005a, Equations for estimation of strong ground motions from shallow crustal earthquakes using data from Europe and the Middle East: horizontal peak ground acceleration and spectral acceleration, Bull. of Earthquake Eng., 3, 1-53. Ambraseys, N.N., Douglas, J., Sarma, S.K. and Smit, P.M., 2005b, Equations for estimation of strong ground motions from shallow crustal earthquakes using data from Europe and the Middle East: vertical peak ground acceleration and spectral acceleration, Bull. of Earthquake Eng., 3, 55-73. Aster R.C. and Scott J., 1993, Comprehensive characterization of waveform similarity in microearthquake data set, Bull. Seism. Soc. Am, 83, 1307-1314. Augliera P., Cattaneo M. and Eva C., 1995, Seismic multiplet analysis and its implication in seismotectonics, Tectonophysics 248, 219-234. Augliera P., D’Alema E., Marzorati S., Massa M. (2006). Data set Garda 2004: elaborazione dati, installazione stazioni sismiche. Convenzione ProCiv-INGV 2004-2006 - Progetto S3: scenari di scuotimento in are di interesse prioritario e/o strategico, DPC-S3: Deliveral D12, DVD. Cattaneo M., Augliera P., Spallarossa D. and Eva C., 1997, Reconstruction of a seismogenetic structures by multiplets analysis: an example of Western Liguria, Italy, Bull. Seism. Soc. Am 87, 971-986. Cattaneo M., Augliera P., Spallarossa D. and Lanza V., 1999, A waveform similarity approach to investigate seismicity patterns, Natural Hazard 19, 123-138. Deichmann N. and Garcia-Fernandez M., 1992, Rupture geometry from high-precision relative hypocentre locations of microearthquake clusters, Geophys. J. Int. 110, 501-517. Ferretti G., Massa M. and Solarino S., 2005, An improved method for the recognition of seismic families: application to the Garfagnana-Lunigiana area (Italy), Bull. Seism. Soc. Am., 95, n. 5, 1903-1915. Franceschina G., Pessina V., Di Giacomo, D., Massa, M., Castellaro S., Mulargia F. and Mucciarelli M., 2009, Ricostruzione del moto del suolo per il terremoto del Garda del 2004 (In Italian), Boll. Soc. Geol. It., 128, 1, 217-228. Galadini, F., P. Galli, A. Citadini, and B. Giaccio, 2001. Late quaternary fault movements in the Mt. Baldo-Lessini Mts. sector of the southalpine area (northern Italy). Netherlands Jour., of Geosc. 80, 187-208. Geller R.J. and Mueller C.S., 1980, Four similar earthquakes in central California, Geophys. Res. Lett., 7, 821-824. Got J., Fréchet J. and Klein F.W., 1994, Deep fault plane geometry inferred from multiplet relative relocation beneath the south flank of Kilauea, J. Geophys. Res., 99, 15375-15386. Hartzell S.H., 1978, Earthquake aftershocks as Green’s functions, Geophys. Res. Lett., 5, 1-4. Irikura, K. 1986, Prediction of strong acceleration motion using empirical Green’s function,Proc. 7th Japan Earthq. Eng. Symp., 151-156. Joswig M., 1995, Automated classification of local earthquake data in the BUG small array, Geophys. J. Int., 120, 262-286. Lagomarsino S., Podestà S., Resemini S., Eva C., Frisenda M., Spallarossa D. and Bindi D., 2004, Terremoto del Molise: correlazione tra il danno agli edifici monumentali e le caratteristiche dello scuotimento sismico, XI meeting “L’ingegneria sismica in Italia”, Genova 25-29 gennaio 2004 (in Italian). Lahr J.C., 1979, Hypoellipse: a computer program for determining local earthquake parameters, magnitude, and first motion pattern, U.S. Goel. Surv., Open File Rep., 79-431. LeBrun B., Hatzfeld D. and Bard P.Y., 2001, Site effect study in urban area: exparimental results in Grenoble (France), Pure Appl. Geophys., 158, 2543-2557. Massa M., Ferretti G., Spallarossa D. And Eva C., 2006a, Improving automatic location procedure by waveform similarity analysis: an application in the south western Alps (Italy), Physics of the Earth and Planetary Interiors, 154, n. 1, 18-29. Massa M., Eva E., Spallarossa D. and Eva C., 2006b, Detection of earthquake clusters on the basis of waveforms similarity: an application in the Monferrato region (Piemonte, Italy), Journal of Seism., 10, 1-22. Massa M., Morasca P., Moratto L., Marzorati S., Costa G. and Spallarossa D., 2008, Empirical ground motion prediction equations for Northern Italy using weak and strong motion amplitudes, frequency content and duration parameters, Bull. Seism. Soc. Am., vol. 98-3, pp. 1319-1342. Nishigami K., 1987, Clustering structure and fracture process of microearthquake sequences, J. Phys. Earth, 35, 425-448. Olson E.L. and Allen R.M., The deterministic nature of earthquake rupture , Nature, 438, n 10, 212-215. Press W.H., Flannery P.B., Teukolsky S.A. and Wetterling W.T., 1988, Numerical Recipes in C, The art of Scientific computing, Cambridge University Press, Cambridge, UK. Rautian T. G. and Khalturin V. I., 1978, The use of the coda for determination of the earthquake source spectrum, Bull. Seism. Soc. Am., 68, 923-948. Sabetta, F. and Pugliese, A., 1996, Estimation of response spectra and simulation of non-stationary earthquake ground motion, Bull. Seism. Soc. Am., 86, 337-352. Schaff D.P., Bokelmann H.R., Ellsworth W.L., Zanzerkia E., Waldhauser F. and Beroza G.C., 2004, Optimizing correlation techniques for improved earthquake location, Bull. Seism. Soc. Am., 94, 2, 705-721. Scherbaum F. and Wendler J., 1986, Cross spectral analysis of Swabian Jura (SW Germany) three component microearthquake recordings, J. Geophys., 60, 157-166. Schulte-Theis H., 1995: Cluster analysis of European seismicity, Cahiers Centre Europ. Geodyn. Seism. 12, 201-224 pp. Schulte-Theis H. and Joswig M., 1993, Clustering and location of mining induced seismicity in the Ruhr basin by automated master event comparison based on Dynamic Waveform Matching (DWM), Computers and Geosciences, 19, 233-242. Smalley R.F., Chatelain J.L., Turcotte, D.L. and Prévot R., 1987, A fractal approach to the clustering of the earthquakes: applications to the seismicity of the New Hebrides, Bull. Seism. Soc. Am., 77, 1368-1381. Tsujiura M., 1983, Characteristic frequencies for earthquake families and their tectonic implications: evidence from earthquake swarms in the Kanto District, Japan, Pure Appl. Geophys. 121, 574-600. Zhizhin M.N., Gvishiani A.D., Bottard S., Mohammadioun B. and Bonnin J., 1992, Classification of strong motion waveform from different geological regions using syntactic pattern recognition scheme, Cahiers du centre Européen de Géodynamique et de Séismologie, Luxembourg, Grand-Duché de Luxembourg 6, 33-42. Zhizhin M.N., Gvishiani A.D., Rouland D., Bonnin J. and Mohammadioun B., 1994, Identification of geological region for earthquakes using syntactic pattern recognition of seismograms, Natural Hazards, 10, 139-147.en
dc.description.obiettivoSpecifico4.1. Metodologie sismologiche per l'ingegneria sismicaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorMassa, M.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italia-
crisitem.author.orcid0000-0003-0696-2035-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Massa_BSSA_2009.pdf1.1 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

1
checked on Feb 10, 2021

Page view(s)

80
checked on Apr 24, 2024

Download(s)

20
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric