Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6514
DC FieldValueLanguage
dc.contributor.authorallSaraò, A.; Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, Centro Richerche Sismologiche, Trieste, Italy.en
dc.contributor.authorallCocina, O.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallPrivitera, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallPanza, G.; Dipartimento di Scienze della Terra, Universit`a degli Studi di Trieste, Trieste, Italyen
dc.date.accessioned2011-01-11T07:29:29Zen
dc.date.available2011-01-11T07:29:29Zen
dc.date.issued2010-05en
dc.identifier.urihttp://hdl.handle.net/2122/6514en
dc.description.abstractThe Mt. Etna eruption of July 2001 was announced by severe seismic activity and by the opening of a 7-km-long zone of densely distributed fractures. The large amount of data collected gave a unique opportunity to study the magma migration process and to infer the position and geometry of the uprising dyke. Results from multidisciplinary approaches suggest that the observed phenomenology was the result of the rapid intrusion of a vertical dyke, oriented roughly N–S and located a few km south of the summit region. To add new constraints to the dynamics of the eruption process, in this study we determine the full seismic moment tensors of 61 earthquakes, selected among those occurring between July 12 and July 18 (Md ≥ 2.2), located in a depth ranging from 1 km above sea level (a.s.l.) to 3 km below sea level (b.s.l.). At the beginning of the seismic swarm, the dominant component of the seismic source tensor is double-couple percentage (around 65 per cent on average) statistical significant at 95 per cent confidence level and in the following hours the non-double-couple components increase at the expenses of the double-couple. Such observations are related well with the system of fractures formed just before the eruption, whereas the increasing non-double-couple components can be explained as the response of the confining rocks to the rising magma and degassing processes. The type of focal mechanisms retrieved are predominantly of normal fault type (44 per cent), strike slip (30 per cent) and thrust mechanisms (9 per cent), and outline a scenario that concurs with the stress regime induced by a dyke injection. The space–time analysis of seismic source locations and source moment tensors (1) confirms the evidence of a vertical dyke emplacement that fed the 2001 lateral eruption and (2) adds new insights to support the hypothesis of the injection of a second aborted dyke, 2 km SE from the fractures zone.en
dc.language.isoEnglishen
dc.publisher.nameWiley - Blackwell; Royal Astronomical Societyen
dc.relation.ispartofGeophysical Journal Internationalen
dc.relation.ispartofseries/181 (2010)en
dc.subjectTime series analysisen
dc.subjectEarthquake source observationsen
dc.subjectVolcano seismologyen
dc.subjectEruption mechanisms and flow emplacementen
dc.subjectVolcano monitoringen
dc.titleThe dynamics of the 2001 Etna eruption as seen by full moment tensor analysisen
dc.title.alternativeMoment tensors before the 2001 Etna eruptionen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber951–965en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismologyen
dc.identifier.doi10.1111/j.1365-246X.2010.04547.xen
dc.relation.referencesAiuppa, A., Federico, C., Paonita, A., Pecoraino, G. & Valenza, M., 2002. S, C1 and F degassing as an indicator of volcanic dynamics: the 2001 eruption ofMount Etna, Geophys. Res. Lett., 29, doi: 10.1029/2002GL015032. Alparone, S., Andronico, D., Giammanco, S. & Lodato L., 2004. A multidisciplinary approach to detect active pathways for magma migration and eruption at Mt. Etna (Sicily, Italy) before the 2001 and 2002–2003 eruptions, J. Volc. Geotherm. Res., 136, 121–140. Barberi, G., Cocina, O., Neri, G., Privitera, E. & Spampinato, S., 2000. Volcanological inferences from seismic strain tensor computation at Mt. Etna Volcano, Sicily, Bull. Volcanol., 62, 318–330. Behncke, B. & Neri,M., 2003. The 2001 eruption ofMt. Etna (Sicily), Bull. Volcanol., 63, doi: 10.1007/s00445-003-0274-1. Bonaccorso, A., Aloisi, M. & Mattia, M., 2002. Dike emplacement forerunning the Etna July 2001 eruption modeled through continuous tilt and GPS data, Geophys. Res. Lett., 29, doi: 10.1029/2001GL014397. Bonaccorso, A., D’Amico, S., Mattia, M. & Patan`e, D., 2004. Intrusive mechanisms at Mt. Etna forerunning the July-August 2001 eruption from seismic and ground deformation data, Pure appl. Geophys., 161, 1469–1487, doi: 10.1007/s00024-004-2515-4. Bonafede,M. & Danesi, S., 1997. Near-field modifications of stress induced by dyke injection at shallow depth, Geophys. J. Int., 130, 435–448. Bonforte, A., Guglielmino, F., Palano, M. & Puglisi, G., 2004. A syneruptive ground deformation episode measured by GPS, during the 2001 eruption on the upper southern flank of Mt Etna, Bull. Volc., 66, 366–341.Carbone, D., Budetta, G., Greco, F. & Rymer, H., 2003. Combined discrete and continuous gravity observations at Mount Etna, J. Volc. Geotherm. Res., 123, 123–135. Chouet, B.A. & Julian, B.R., 1985. Dynamics of an expanding fluid-filled crack, J. geophys. Res., 90, 11 187–11 198. Corsaro, R.A., Miraglia, L. & Pompilio, M., 2007. Petrologic evidence of a complex plumbing system feeding the July–August 2001 eruption of Mt. Etna, Sicily, Italy, Bull. Volc., 69, 401–421, doi: 10.1007/s00445-006- 0083-4. Foulger, G.R. & Julian, B.R., 1993. Non-double couple earthquakes at the Hengill-Grensdalur Volcanic Complex, Iceland: are they the artifacts of crustal heterogeneity?, Bull. seismol. Soc. Am., 83, 38–52. Foulger, G.R., Julian, B.R., Hill, D.P., Pitt, A.M., Malin, P.E. & Shalev, E., 2004. Non-double-couple microearthquakes at Long Valley caldera, California, provide evidence for hydraulic fracturing, J. Volc. Geotherm. Res., 132, 45–71. Gambino, S., 2004. Continuous dynamic response along a pre-existing structural discontinuity induced by the 2001 eruption atMt. Etna, Earth Planets Space, 56, 447–456. Guidarelli, M. & Panza, G.F., 2006. Determination of the seismic moment tensor for local events in the South Shetland Islands and Bransfield Strait, Geophys. J. Int., 167, 684–692, doi: 10.1111/j.1365-246X.2006.02953.x. Guidarelli, M., Sara`o, A. & Panza, G.F., 2002. Surface wave tomography and seismic source studies at Campi Flegrei (Italy), Phys. Earth planet. Int., 134, 157–173. Guidarelli, M., Zille, A., Sara`o, A., Natale, M., Nunziata, C. & Panza, G.F., 2006. Shear-wave velocity models and seismic sources in Campanian volcanic areas: Vesuvio and Campi Flegrei, in Vesuvius 2000: Education, Security and Prosperity, pp. 287–309, ed. Dobran, F., Elsevier, Amsterdam. Hanks, T.C. & Kanamori, H., 1979. A moment magnitude scale, J. geophys. Res., 84, 2348–2350. INGV- Sezione di Catania, 2001. Multidisciplinary approach yields insights into Mt. Etna eruption, EOS Trans. Am. geophys. Un., 85/52, F653. Jost, M.L. & Herrmann, R.B., 1989. A student’s guide to and review of moment tensors, Seismol. Res. Lett., 60, 37–57. Kravanja, S., Panza, G.F. & Sileny, J., 1999. Robust retrieval of seismic point source time function, Geophys. J. Int., 136, 385–394. Koch, K., 1991. Moment tensor inversion of local earthquake data – I. Investigation of the method and its numerical stability with model calculations, Geophys. J. Int., 106, 305–319. Lahr, J.C., 1989. HYPOELLIPSE/VERSION 2.0∗: a computer program for determining local earthquake hypocentral parameters, magnitude, and first motion pattern,U.S. Geological Survey Open-File Report 89/116, 81 pp. Lokmer, I., Bean, C.J., Saccorotti, G. & Patan`e, D., 2007. Moment-tensor inversion of LP events recorded on Etna in 2004 using constraints obtained from wave simulation tests, Geophys. Res. Lett., 34, L22316, doi: 10.1029/2007GL031902. Ludwig, W.J., Nafe, J.E. & Drake, C.L., 1970. Seismic refraction, in The Sea, vol.4, pp. 53–84, ed. Maxwell, A.E., Wiley-Interscience, New York. Mart´ınez-Ar´evalo, C., Patan`e, D., Rietbrock, A. & Ib´a˜nez, J.M., 2005. The intrusive process leading to the Mt. Etna 2001 flank eruption: constraints from 3-D attenuation tomography, Geophys. Res. Lett., 32, L21309. doi: 10.1029/2005GL023736. Musumeci, C., Cocina, O., De Gori, P. & Patan`e, D., 2004. Seismological evidence of stress induced by dike injection during the 2001 Mt. Etna eruption, Geophys. Res. Lett., 31, L07617, doi: 10.1029/2003GL019367. Nabelek, J.L., 1984. Determination of earthquake parameters from inversion of body waves, PhD thesis. Massachusetts Institute of Technology, Cambridge, USA. Panza, G.F., 1985. Synthetic seismograms: the Rayleigh waves modal summation, J. Geophys., 58, 125–145. Panza, G.F.&Sara`o, A., 2000. Monitoring volcanic and geothermal areas by full seismic moment tensor inversion: are non-double couple components always artefacts of modelling?, Geophys. J. Int., 143, 353–364. Panza G.F., Romanelli, F. & Vaccari, F., 2000. Seismic wave propagation in laterally heterogeneous anelastic media: theory and applications to seismic zonation, Adv. Geophys., 43, 1–95. Patan`e, D., Chiarabba, C., Cocina, O., De Gori, P., Moretti, M. & Boschi, E., 2002. Tomographic images and 3D earthquake locations of the seismic swarm preceding the 2001 Mt. Etna eruption: evidence for a dyke intrusion, Geophys. Res. Lett., 29, 1497, doi: 10.1029/2001GL014391. Patan`e,D. et al., 2003. Seismological constraints for the dike emplacement of July-August 2001 lateral eruptionMt. Etna volcano, Italy, Ann. Geophys., 46, 599–608. Patan`e, D., Barberi, G., Cocina, O., De Gori, P. & Chiarabba, C., 2006. Time-resolved seismic tomography detects magma intrusions at Mount Etna, Science, 313, 821–823. Riedesel, M.A. & Jordan, T.H., 1989. Display and assessment of seismic moment tensors, Bull. seismol. Soc. Am., 79, 85–100. Reasenberg, P.A. & Oppenheimer, D., 1985. FPFIT, FPPLOT AND FPPAGE: fortran computer programs for calculating and displaying earthquake fault-plane solutions,U.S. Geological Survey Open-File Report, 85–739. Sara`o, A., Panza, G.F., Privitera, E. & Cocina, O., 2001. Non double couple mechanisms in the seismicity preceding 1991–1993 Etna volcano eruption, Geophys. J. Int., 145, 319–335. ˇS ´ılen´y, J., 1998. Earthquake source parameters and their confidence regions by a genetic algorithm with a “memory”, Geophys. J. Int., 134, 228–242. ˇS ´ılen´y, J. & Panza, G.F., 1991. Inversion of seismograms to determine simultaneously the moment tensor components and source time function for a point source buried in a horizontally layered medium, Stud. geophys. Geod., 35, 166–183. ˇS ´ılen´y, J., Panza, G.F. & Campus, P., 1992. Waveform inversion for point source moment tensor retrieval with optimization of hypocentral depth and structural model, Geophys. J. Int., 108, 259–274. ˇS ´ılen´y J., Campus, P.&Panza, G.F., 1996. Seismicmoment tensor resolution by waveform inversion of a few local noisy records–I. Synthetic tests, Geophys. J. Int., 126, 605–619. Silver, P.G. & Jordan, T.H., 1982. Optimal estimation of scalar seismic moment, Geophys. J. R. astr. Soc., 70, 755–787. Thurber, C.H., 1993. Local earthquake tomography: velocity and Vp/Vstheory, in Seismic Tomography: Theory and Practice, pp. 563–583, eds. Iyer, H.M., Hirahara, K., Chapman and Hall, London. Thurber, C. & Gripp, E., 1988. Flexure and seismicity beneath the south flank of Kilauea volcano and tectonic implications, J. geophys. Res., 93, 4271–4278. Zoback, M.L., 1992. First- and second-order patterns of stress in the lithosphere: the world stress map project, J. geophys. Res. 97, 11 703–11 728.en
dc.description.obiettivoSpecifico3.6. Fisica del vulcanismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorSaraò, A.en
dc.contributor.authorCocina, O.en
dc.contributor.authorPrivitera, E.en
dc.contributor.authorPanza, G.en
dc.contributor.departmentIstituto Nazionale di Oceanografia e di Geofisica Sperimentale, Centro Richerche Sismologiche, Trieste, Italy.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentDipartimento di Scienze della Terra, Universit`a degli Studi di Trieste, Trieste, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptOGS, CRS Department-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.orcid0000-0001-5734-5702-
crisitem.author.orcid0000-0003-1856-830X-
crisitem.author.orcid0000-0001-9623-1919-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Sarao_etal_GJI2010.pdfMain article1.77 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

8
checked on Feb 10, 2021

Page view(s)

376
checked on Apr 20, 2024

Download(s)

45
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric