Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6470
DC FieldValueLanguage
dc.contributor.authorallLangridge, R. M.; GNS SCIENCE, P.O. BOX 30-368, LOWER HUTT 5010, NEW ZEALANDen
dc.contributor.authorallVillamor, P.; GNS SCIENCE, P.O. BOX 30-368, LOWER HUTT 5010, NEW ZEALANDen
dc.contributor.authorallBasili, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallAlmond, P.; DEPARTMENT OF SOIL SCIENCE, P.O. BOX 84, LINCOLN UNIVERSITY, LINCOLN 7647, CANTERBURY, NEW ZEALANDen
dc.contributor.authorallMartinez-Diaz, J. J.; DEPARTAMENTO DE GEODINÁMICA, FACULTAD DE CIENCIAS GEOLÓGICAS, UNIVERSIDAD COMPLUTENSE DE MADRID, MADRID 28040, SPAINen
dc.contributor.authorallCanora, C.; DEPARTAMENTO DE GEODINÁMICA, FACULTAD DE CIENCIAS GEOLÓGICAS, UNIVERSIDAD COMPLUTENSE DE MADRID, MADRID 28040, SPAINen
dc.date.accessioned2010-12-27T08:53:31Zen
dc.date.available2010-12-27T08:53:31Zen
dc.date.issued2010-05-25en
dc.identifier.urihttp://hdl.handle.net/2122/6470en
dc.description.abstractThe northeast-striking, dextral-reverse Alpine fault transitions into the Marlborough Fault System near Inchbonnie in the central South Island, New Zealand. New slip-rate estimates for the Alpine fault are presented following a reassessment of the geomorphology and age of displaced late Holocene alluvial surfaces of the Taramakau River at Inchbonnie. Progressive avulsion and abandonment of the Taramakau floodplain, aided by fault movements during the late Holocene, have preserved a left-stepping fault scarp that grows in height to the northeast. Surveyed dextral (22.5 ± 2 m) and vertical (4.8 ± 0.5 m) displacements across a left stepover in the fault across an alluvial surface are combined with a precise maximum age from a remnant tree stump (≥1590–1730 yr) to yield dextral, vertical, and reverse-slip rates of 13.6 ± 1.8, 2.9 ± 0.4, and 3.4 ± 0.6 mm/yr, respectively. These values are larger (dextral) and smaller (dip slip) than previous estimates for this site, but they refl ect advances in the local chronology of surfaces and represent improved time-averaged results over 1.7 k.y. A geological kinematic circuit constructed for the central South Island demonstrates that (1) 69%–89% of the Australian-Pacific plate motion is accommodated by the major faults (Alpine-Hope-Kakapo) in this transitional area, (2) the 50% drop in slip rate on the Alpine fault between Hokitika and Inchbonnie is taken up by the Hope and Kakapo faults at the southwestern edge of the Marlborough Fault System, and (3) the new slip rates are more compatible with contemporary models of strain partitioning presented from geodesy.en
dc.language.isoEnglishen
dc.publisher.nameGeological Society of Americaen
dc.relation.ispartofLithosphereen
dc.relation.ispartofseries3/2(2010)en
dc.subjectAlpine faulten
dc.subjectplate boundaryen
dc.subjectslip rateen
dc.subjectNew Zealanden
dc.titleRevised slip rates for the Alpine fault at Inchbonnie: Implications for plate boundary kinematics of South Island, New Zealanden
dc.title.alternativeRevised slip rates for the Alpine fault at Inchbonnieen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber139-152en
dc.identifier.URLlithosphere.gsapubs.orgen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismologyen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.02. Geochronologyen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.03. Geomorphologyen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.09. Structural geologyen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolutionen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamicsen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonicsen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonicsen
dc.identifier.doi10.1130/L88.1en
dc.relation.referencesAkima, H., 1978, A method for bivariate interpolation and smooth surface fi tting for irregularly distributed data points: ACM Transactions on Mathematical Software, v. 4, p. 148–159, doi: 10.1145/355780.355786. Barnes, P.M., 2009, Postglacial (after 20 ka) dextral slip rate of the offshore Alpine Fault, New Zealand: Geology, v. 37, p. 3–6, doi: 10.1130/G24764A.1. Barnes, P.M., Sutherland, R., and Delteil, J., 2005, Strike-slip structure and sedimentary basins of the southern Alpine Fault, Fiordland, New Zealand: Geological Society of America Bulletin, v. 117, p. 411–435, doi: 10.1130/B25458.1. Berryman, K.R., 1975, Earth Deformation Studies Reconnaissance of the Alpine Fault: New Zealand Geological Survey Report, EDS 30, 25 p. Berryman, K., 1979, Active faulting and derived PHS directions in the South Island, New Zealand: Royal Society of New Zealand Bulletin, v. 18, p. 29–34. Berryman, K., and Villamor, P., 2004, Surface rupture of the Poulter Fault in the March 9, 1929 Arthur’s Pass Earthquake, and re-defi nition of the Kakapo Fault, New Zealand: New Zealand Journal of Geology and Geophysics, v. 47, p. 341–351. Berryman, K.R., Beanland, S., Cooper, A.F., Cutten, H.N., Norris, R.J., and Wood, P.R., 1992, The Alpine Fault, New Zealand: Variation in Quaternary structural style and geomorphic expression: Annales Tectonicae, v. 6, p. 126–163. Berryman, K., Almond, P., Villamor, P., Read, S., Tonkin, P., and Alloway, B., 2009, Alpine Fault ruptures shape the geomorphology of Westland, New Zealand: Data from the Whataroa catchment: Melboune, Australia, 7th ANZIAG International Conference on Geomorphology, abs. 214. Biasi, G., and Weldon, R.J., 1994, Quantitative refi nement of calibrated C-14 distributions: Quaternary Research, v. 41, p. 1–18, doi: 10.1006/qres.1994.1001. Bronk Ramsey, C., 2007, OxCal Program, v. 4.0: University of Oxford, UK, Radiocarbon Accelerator Unit, https://c14. arch.ox.ac.uk/oxcal.html. Cowan, H.A., Nicol, A., and Tonkin, P., 1996, A comparison of historical and paleoseismicity in a newly formed fault zone and a mature fault zone, North Canterbury, New Zealand: Journal of Geophysical Research, v. 101, p. 6021–6036, doi: 10.1029/95JB01588. Cox, S.C., and Findlay, R.H., 1995, The Main Divide Fault Zone and its role in formation of the Southern Alps, New Zealand: New Zealand Journal of Geology and Geophysics, v. 38, p. 489–499. Cox, S.C., and Sutherland, R., 2007, Regional geologic framework of South Island, New Zealand, and its signifi cance for understanding the active plate boundary, in Okaya, D., et al., eds., A Continental Plate Boundary: Tectonics at South Island, New Zealand: Washington, D.C., American Geophysical Union, Geophysical Monograph 175, p. 19–46. DeMets, C., Gordon, G., Argus, D.F., and Stein, S., 1994, Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions: Geophysical Research Letters, v. 21, p. 2191–2194, doi: 10.1029/94GL02118. Golder Associates, 2007, Geotechnical Site Suitability Assessment for Proposed Subdivision at Lake Poerua, Westland: Ref. no. R06812016-02-V2. Hewitt, A.E., 1998, New Zealand Soil Classifi cation (2nd edition): Lincoln, New Zealand, Manaaki Press, Landcare Research Science Serial 1, 133 p. Holt, W.E., and Haines, A.J., 1995, The kinematics of northern South Island, New Zealand, determined from geologic strain rates: Journal of Geophysical Research, v. 100, p. 17,991–18,010, doi: 10.1029/95JB01059. Howard, M., Nicol, A., Campbell, J., and Pettinga, J.R., 2005, Holocene paleoearthquakes on the strike-slip Porters Pass Fault, Canterbury, New Zealand: New Zealand Journal of Geology and Geophysics, v. 48, p. 59–74. Humphreys, E.D., and Weldon, R.J., II, 1994, Deformation across the western United States: A local estimate of Pacifi c–North America transform deformation: Journal of Geophysical Research, v. 99, p. 19,975–20,010, doi: 10.1029/94JB00899. Langridge, R.M., and Berryman, K.R., 2005, Morphology and slip rate of the Hurunui section of the Hope Fault, South Island, New Zealand: New Zealand Journal of Geology and Geophysics, v. 48, p. 43–58. Langridge, R.M., and McSaveney, M., 2008, Updated review of proposed Lake Poerua subdivision, Grey District: GNS Science Consultancy Report 2008/11. Langridge, R.M., Villamor, P., Basili, R., Hemphill-Haley, M., 2008, Slip rate of the Alpine fault at the Inchbonnie stepover and implications for the kinematics of South Island, New Zealand, in Programme and Abstracts of the 31st General Assembly of the European Seismological Congress, Crete, 7–12 September 2008. McCormac, F.G., Hogg, A.G., Blackwell, P.G., Buck, C.E., Higham, T.F.G., and Reimer, P.J., 2004, SHCAL04 Southern Hemisphere calibration 0–11.0 kyr BP: Radiocarbon, v. 46, p. 1087–1092. McSaveney, M.J., 1992, A Manual for Weathering Rind Dating of Grey Sandstones of the Torlesse Supergroup, New Zealand: Lower Hutt, New Zealand, Institute of Geological and Nuclear Sciences Science Report 92/4, 52 p. Nathan, S., Rattenbury, M.R., and Suggate, R.P. (compilers), 2002, Geology of the Greymouth Area: Lower Hutt, New Zealand, Institute of Geological and Nuclear Sciences Geological Map 12, scale 1:250,000, 1 sheet plus 65 p. Norris, R.J., and Cooper, A.F., 2001, Late Quaternary slip rates and slip partitioning on the Alpine Fault, New Zealand: Journal of Structural Geology, v. 23, p. 507–520, doi: 10.1016/S0191-8141(00)00122-X. Rhoades, D.A., and Van Dissen, R.J., 2003, Estimates of the time-varying hazard of rupture of the Alpine Fault, allowing for uncertainties: New Zealand Journal of Geology and Geophysics, v. 46, p. 479–488. Rieser, U., Wang, N., 2009, Determination of sediment deposition ages by Luminescence Dating: Victoria University of Wellington Luminescence Laboratory, Technical Report 09/02. Robinson, R., 2004, Potential earthquake triggering in the Alpine-Marlborough-Buller fault network, New Zealand: Geophysical Journal International, v. 159, p. 734– 748, doi: 10.1111/j.1365-246X.2004.02446.x. Stirling, M.W., McVerry, G.H., and Berryman, K.R., 2002, A new seismic hazard analysis for New Zealand: Bulletin of the Seismological Society of America, v. 92, p. 1878– 1903, doi: 10.1785/0120010156. Stuiver, M., and Polach, H.A., 1977, Discussion: Reporting of 14C data: Radiocarbon, v. 19, p. 355–363. Suggate, R.P., 1965, Late Pleistocene Geology of the Northern Part of the South Island, New Zealand: New Zealand Geological Survey Bulletin 77, 91 p. Suggate, R.P., and Waight, T.E., 1999, Geology of the Kumara- Moana Area: Lower Hutt, New Zealand, Institute of Geological and Nuclear Sciences Geological Map 24, scale 1:50,000, 1 sheet plus 124 p. Sutherland, R., and Norris, R.J., 1995, Late Quaternary displacement rate, paleoseismicity, and geomorphic evolution of the Alpine fault: Evidence from Hokuri Creek, South Westland, New Zealand: New Zealand Journal of Geology and Geophysics, v. 38, p. 419–430. Sutherland, R., Berryman, K.R., and Norris, R.J., 2006, Quaternary slip rate and geomorphology of the Alpine fault: Implications for the kinematics and seismic hazard in southwest New Zealand: Geological Society of America Bulletin, v. 118, p. 464–474, doi: 10.1130/B25627.1. Sutherland, R., Eberhart-Phillips, D., Harris, R.A., Stern, T., Beavan, J., Ellis, S., Henrys, S., Cox, S., Norris, R.J., Berryman, K.R., Townend, J., Bannister, S., Pettinga, J., Leitner, B., Wallace, L., Little, T.A., Cooper, A.F., Yetton, M., and Stirling, M., 2007, Do great earthquakes occur on the Alpine fault in central South Island, New Zealand?, in Okaya, D., et al., eds., A Continental Plate Boundary: Tectonics at South Island, New Zealand: Washignton, D.C., American Geophysical Union, Geophysical Monograph 175, p. 235–251. Tonkin, P.J., and Basher, L.R., 1990, Soil-stratigraphic techniques in the study of soil and landform evolution across the Southern Alps, New Zealand, in Kneupfer, P.L.K., and McFadden, L.D., eds., Soils and Landscape Evolution: Geomorphology, v. 3, p. 547–575. Toy, V. (compiler), 2007, Field Trip Guide, in Pre-Workshop Field Trip for the Deep Fault Drilling Project (DFDP), Alpine Fault, New Zealand, 5–7 November 2007: Dunedin, University of Otago Press, 85 p. U.S. Natural Resources Conservation Service, 1999, Soil Taxonomy: A Basic System of Soil Classifi cation for Making and Interpreting Soil Surveys: Washington, D.C., U.S. Department of Agriculture, 869 p. Van Dissen, R., and Yeats, R., 1991, Hope fault, Jordan thrust, and uplift of the Seaward Kaikoura Range, New Zealand: Geology, v. 19, p. 393–396, doi: 10.1130/0091-7613 (1991)019<0393:HFJTAU>2.3.CO;2. Wallace, L.M., Beavan, R.J., McCaffrey, R., Berryman, K.R., and Denys, P., 2007, Balancing the plate motion budget in the South Island, New Zealand using GPS, geological and seismological data: Geophysical Journal International, v. 168, p. 332–352, doi: 10.1111/j.1365-246X.2006.03183.x. Wellman, H.W., 1955, New Zealand Quaternary tectonics: Geologische Rundschau, v. 43, p. 248–257, doi: 10.1007/ BF01764108. Wells, A., Yetton, M.D., Duncan, R.P., and Stewart, G.H., 1999, Prehistoric dates of the most recent Alpine fault earthquakes, New Zealand: Geology, v. 27, p. 995–998, doi: 10.1130/0091-7613(1999)027<0995:PDOTMR>2.3.CO;2. Wells, A., Duncan, R.P., and Stewart, G.H., 2001, Forest dynamics in Westland, New Zealand: The importance of large, infrequent earthquake-induced disturbance: Journal of Ecology, v. 89, p. 1006–1018, doi: 10.1111/j.1365-2745.2001.00594.x. Yang, J.S., 1991, The Kakapo Fault—A major active dextral fault in the central North Canterbury–Buller regions of New Zealand: New Zealand Journal of Geology and Geophysics, v. 34, p. 137–143. Yeats, R., and Berryman, K.R., 1987, South Island, New Zealand, and Transverse Ranges, California: A seismotectonic comparison: Tectonics, v. 6, p. 363–376, doi: 10.1029/ TC006i003p00363. Yetton, M.D., 1998, Progress in understanding the paleoseismicity of the central and northern Alpine Fault, Westland, New Zealand: New Zealand Journal of Geology and Geophysics, v. 41, p. 475–483. Yetton, M.D., 2000, The probability and consequences of the next Alpine Fault earthquake, South Island, New Zealand [Ph.D. thesis]: Christchurch, New Zealand, University of Canterbury, 312 p. + 2 maps.en
dc.description.obiettivoSpecifico3.2. Tettonica attivaen
dc.description.obiettivoSpecifico4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionaleen
dc.description.journalTypeN/A or not JCRen
dc.description.fulltextreserveden
dc.contributor.authorLangridge, R. M.en
dc.contributor.authorVillamor, P.en
dc.contributor.authorBasili, R.en
dc.contributor.authorAlmond, P.en
dc.contributor.authorMartinez-Diaz, J. J.en
dc.contributor.authorCanora, C.en
dc.contributor.departmentGNS SCIENCE, P.O. BOX 30-368, LOWER HUTT 5010, NEW ZEALANDen
dc.contributor.departmentGNS SCIENCE, P.O. BOX 30-368, LOWER HUTT 5010, NEW ZEALANDen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentDEPARTMENT OF SOIL SCIENCE, P.O. BOX 84, LINCOLN UNIVERSITY, LINCOLN 7647, CANTERBURY, NEW ZEALANDen
dc.contributor.departmentDEPARTAMENTO DE GEODINÁMICA, FACULTAD DE CIENCIAS GEOLÓGICAS, UNIVERSIDAD COMPLUTENSE DE MADRID, MADRID 28040, SPAINen
dc.contributor.departmentDEPARTAMENTO DE GEODINÁMICA, FACULTAD DE CIENCIAS GEOLÓGICAS, UNIVERSIDAD COMPLUTENSE DE MADRID, MADRID 28040, SPAINen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextreserved-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptGNS SCIENCE, P.O. BOX 30-368, LOWER HUTT 5010, NEW ZEALAND-
crisitem.author.deptGNS SCIENCE, P.O. BOX 30-368, LOWER HUTT 5010, NEW ZEALAND-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptDEPARTMENT OF SOIL SCIENCE, P.O. BOX 84, LINCOLN UNIVERSITY, LINCOLN 7647, CANTERBURY, NEW ZEALAND-
crisitem.author.deptDepartamento de Geodinámica, Universidad Complutense de Madrid, Spain-
crisitem.author.deptDEPARTAMENTO DE GEODINÁMICA, FACULTAD DE CIENCIAS GEOLÓGICAS, UNIVERSIDAD COMPLUTENSE DE MADRID, MADRID 28040, SPAIN-
crisitem.author.orcid0000-0002-1213-0828-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Langridge_etal_2010_LITHOSPHERE.pdfMain article2.35 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

32
checked on Jan 19, 2021

Page view(s) 50

215
checked on Apr 24, 2024

Download(s)

37
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric