Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6467
DC FieldValueLanguage
dc.contributor.authorallChierici, F.; Istituto di Radioastronomia, Istituto Nazionale di Astrofisica, sezione Bologna, via Gobetti, 101 - 40129 Bologna, Italyen
dc.contributor.authorallPignagnoli, L.; Istituto di Scienze Marine, Consiglio Nazionale delle Ricerca, sezione Bologna, via Gobetti, 101 - 40129 Bologna, Italyen
dc.contributor.authorallEmbriaco, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.date.accessioned2010-12-27T08:36:22Zen
dc.date.available2010-12-27T08:36:22Zen
dc.date.issued2010-03-16en
dc.identifier.urihttp://hdl.handle.net/2122/6467en
dc.description.abstractWithin the framework of a 2-D compressible tsunami generation model with a flat porous seabed, acoustic waves are generated and travel outwards from the source area. The effects of the porous seabed during tsunami generation and propagation processes include wave amplitude attenuation and low pass filtering of both the hydro-acoustic signal and tsunami wave. The period of the acoustic wave generated by the seafloor motion depends on water depth over the source area and is given by four times the period of time required for sound to travel from the sea bed to the surface: these waves carry information about seafloor motion. The semi-analytical solution of the 2-D compressible water layer model overlying a porous seabed is presented and discussed. Furthermore, to include the effects generated by the coupling between compressible porous sedimentary and water layers, a simplified two layer model with the sediment modelled as a compressible viscous fluid is presented.en
dc.language.isoEnglishen
dc.publisher.nameAGUen
dc.relation.ispartofJournal of Geophysical Researchen
dc.relation.ispartofseries/115 (2010)en
dc.relation.isversionofhttp://hdl.handle.net/2122/5215en
dc.subjecttsunami generationen
dc.subjectseafloor motionen
dc.subjectfluidodynamicsen
dc.titleModeling of the hydro-acoustic signal and tsunami wave generated by sea floor motion including a porous seabeden
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberC03015en
dc.subject.INGV05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneousen
dc.identifier.doi10.1029/2009JC005522en
dc.relation.referencesBaptista, M., J. Miranda, F. Chierici, and N. Zitellini (2003), New study of the 1755 earthquake source based on multi-channel seismic survey data and tsunami modelling, Nat. Hazards Earth Syst. Sci., 3, 333 – 340. Bernard, E. N., and A. R. Robinson (Eds.) (2009), The Sea, vol. 15, Tsunamis, Harvard Univ. Press, Cambridge, Mass. Biot, M. A. (1962), Mechanics of deformation and acoustic propagation in porous media, J. Appl. Phys., 33, 1482 – 1498. Boschi, E., E. Guidoboni, G. Ferrari, G. Valensise, and P. Gasperini (Eds.) (1997), Catalogue of the Strong Earthquakes in Italy From 461 BC to 1990, 973 pp., Ist. Naz. di Geofis., Bologna, Italy. Buckingham, M. J. (1997), Theory of acoustic attenuation, dispersion, and pulse propagation in unconsolidated granular materials including marine sediments, J. Acoust. Soc. Am., 102(5), 2579 – 2596. Buckingham, M. J. (1998), Theory of compressional and shear waves in fluidlike marine sediments, J. Acoust. Soc. Am., 103(1), 288 – 299. Comer, R. (1984), The tsunami mode of a flat earth and its excitation by earthquake sources, Geophys. J. R. Astron. Soc., 77, 1 – 27. Dutykh, D., F. Dias, and Y. Kervella (2006), Linear theory of wave gen- eration by a moving bottom, C. R. Acad. Sci. Paris, Ser. I, 343, 499 – 504. Geissler, W. H., L. M. Matias, S. Monna, D. Stich, A. Iben Brahim, F. Mancilla, N. Zitellini, and NEAREST Working Group (2009), From tides to whale calls—Broadband ocean-bottom recordings from the Gulf of Cadiz, paper presented at Eur. Geosci. Union, General Assembly, Vienna, 19 – 24 April. Gisler, G. (2008), Tsunami simulations, Ann. Rev. Fluid Mech., 40, 71 – 90. Gu, Z., and H. Wang (1991), Gravity waves over porous bottoms, Coastal Eng., 15, 497 – 524. Habel, F., and C. Bagtzoglou (2005), Wave induced flow and transport in sediment beds, J. Am. Water Resour. Assoc., 41(2), 461 – 476. Kajiura, K. (1970), Tsunami source, energy and the directivity of wave radiation, Bull. Earthquake Res. Inst. Univ. Tokyo, 48, 835 – 869. Kimura, M. (2006), Shear wave velocity in marine sediment, Jpn. J. Appl. Phys., Part 1, 45(5B), 4824 – 4828. Kowalik, Z., W. Knight, T. Logan, and P. Whitmore (2005), Numerical modeling of the global tsunami: Indonesian tsunami of 26 December 2004, Sci. Tsunami Hazard, 23(1), 40 – 56. Lamb, H. (1932), Hydrodynamics, Dover, New York. Lighthill, J. (1993), Waves in Fluids, Cambridge Univ. Press, Cambridge, U. K. Lomnitz, C., and S. Nilsen-Hofseth (2005), The Indian Ocean disaster: Tsunami physics and early warning dilemmas, EOS Trans. AGU, 86, 65. Ma, K., H. Kanamori, and K. Satake (1999), Mechanism of the 1975 Kalapana, Hawaii, earthquake inferred from tsunami data, J. Geophys. Res., 104, 13,153 – 13,167. Merrifield, M., et al. (2005), Tide gauge observations of the Indian ocean tsunami, December 26, 2004, Geophys. Res. Lett., 32, L09603, doi:10.1029/2005GL022610. Miyoshi, H. (1954), Generation of the tsunami in compressible water (Part I), J. Oceanogr. Soc. Jpn., 10, 1 – 9. Naoi, J., I. Ryoichi, K. Toshiaki, and M. Koichi (2006), Variation in cutoff effect and sound field caused by geometrical structures near the coast, Jpn. J. Appl. Phys., 22(5), 693 – 697. Nosov, M. A. (1999), Tsunami generation in compressible ocean, Phys. Chem. Earth, Part B, 24(5), 437 – 441. Nosov, M. A. (2000), On the tsunami generation in the compressible ocean by vertical bottom displacements, Izv. Russ. Acad. Sci. Atmos. Oceanic Phys., 36(5), 718 – 726. Nosov, M. A., and S. V. Kolesov (2007), Elastic oscillations of water column in the 2003 Tokachi-Oki tsunami source: In-situ measurements and 3-D numerical modelling, Nat. Hazards Earth Syst. Sci., 7, 243 – 249. Nosov, M. A., and K. Sammer (1998), Tsunami excitation by a moving bottom displacement in compressible water, Moscow Univ. Phys. Bull., 53(6), 67 – 70. Nosov, M. A., and S. N. Skachko (2001), Nonlinear tsunami generation mechanism, Nat. Hazards Earth Syst. Sci., 1, 251 – 253. Nosov, M. A., and S. N. Skachko (2002), Nonlinear mechanism of tsunami generation in a compressible ocean, in Local Tsunami Warning and Mitigation, edited by B. W. Levin and M. A. Nosov, pp. 107 – 114, Janus, Moscow. Nosov, M., S. Kolesov, A. Denisova, A. Alekseev, and B. Levin (2007), On the near-bottom pressure variations in the region of the 2003 Tokachi-Oki tsunami source, Oceanology, Engl. Transl., 47, 26 – 32. Nosov, M. A., S. V. Kolesov, and A. V. Denisova (2008), Contribution of nonlinearity in tsunami generated by submarine earthquake, Adv. Geosci., 14, 141 – 146. Novikova, L. E., and L. A. Ostrovsky (1982), On an acoustic mechanism of tsunami wave generation, Oceanology, 22(5), 693 – 697. Ohmachi, T., H. Tsukiyama, and H. Matsumoto (2001), Simulation of tsunami induced by dynamic displacement of seabed due to seismic faulting, Bull. Seismol. Soc. Am., 91(6), 1898 – 1909. Okada, Y. (1985), Surface deformation due to shear and tensile faults in a halfspace, Bull. Seismol. Soc. Am., 75, 1135 – 1154. Okal, E. A. (1988), Seismic parameters controlling far-field tsunami ampli- tudes: A review, Nat. Hazards, 1, 67 – 96. Okal, E. A., P. J. Alasset, O. Hyvernaud, and F. Schindele (2003), The deficient T waves of tsunami earthquakes, Geophys. J. Int., 152(2), 416 – 432. Panza, G., F. Romanelli, and T. Yanovskaya (2000), Synthetic tsunami mareograms for realistic oceanic models, Geophys. J. Int., 141, 498 – 508. Sells, C. C. L. (1965), The effect of a sudden change of shape of the bottom of a slightly compressed ocean, Philos. Trans. R. Soc. London, Ser. A, 258, 495 – 528. Synolakis, C. (1995), Tsunami prediction, Science, 270, 15 – 16. Synolakis, C., P. Liu, G. Carrier, and H. Yeh (1997), Tsunamigenic seafloor deformation, Science, 278, 598 – 600. Synolakis, C., J. Bardet, J. Borrero, H. Davies, E. Okal, E. Silver, J. Sweet, and D. Tappin (2002), Slump origin of the 1998 Papua New Guinea tsunami, Proc. R. Soc. Lond. A, 458, 763 – 769. Tolstoy, I. (1963), The theory of waves in stratified fluids including the effects of gravity and rotation, Rev. Mod. Phys., 35, 207 – 230. Tinti, S., A. Maramai, and L. Graziani (2004), The new catalogue of Italian tsunamis, Nat. Hazards, 33, 439 – 465. van Keken, P. E., C. J. Spiers, A. P. van den Berg, and E. J. Muyzert (1993), The effective viscosity of rocksalt: Implementation of steady state creep laws in numerical models of salt diapirism, Tectonophysics, 225, 457 – 476. Ward, S. (1980), Relationships of tsunami generation and an earthquake source, J. Phys. Earth, 28, 441 – 474. Ward, S. (1981), On tsunami nucleation: 1. A point source, J. Geophys. Res., 86, 7895 – 7900. Ward, S. (1982), On tsunami nucleation: II. An instantaneous modulated line source, Phys. Earth Planet. Inter., 27, 273 – 285. Zitellini, N., F. Chierici, R. Sartori, and L. Torelli (1999), The tectonic source of the 1755 Lisbon earthquake and tsunami, Ann. Geofis., 42, 49 – 55. Zitellini, N., M. Rovere, P. Terrinha, F. Chierici, L. Matias, and Bigset Team (2004), Neogene through Quaternary tectonic reactivation of SW Iberian Passive Margin, Pure Appl. Geophys., 161, 565 – 585. Zitellini, N., et al. (2009), The quest for the Africa-Eurasia plate boundary west of the Strait of Gibraltar, Earth Planet. Sci. Lett., 280, 13 – 50.en
dc.description.obiettivoSpecifico1.8. Osservazioni di geofisica ambientaleen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.contributor.authorChierici, F.en
dc.contributor.authorPignagnoli, L.en
dc.contributor.authorEmbriaco, D.en
dc.contributor.departmentIstituto di Radioastronomia, Istituto Nazionale di Astrofisica, sezione Bologna, via Gobetti, 101 - 40129 Bologna, Italyen
dc.contributor.departmentIstituto di Scienze Marine, Consiglio Nazionale delle Ricerca, sezione Bologna, via Gobetti, 101 - 40129 Bologna, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIRA-INAF, Via P. Gobetti, 101 40129 Bologna, Italy-
crisitem.author.deptIstituto di Scienze Marine-CNR, sez. di Bologna, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.orcid0000-0001-7943-7341-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2009JC005522.pdf826.18 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

26
checked on Feb 10, 2021

Page view(s) 50

338
checked on Mar 27, 2024

Download(s)

31
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric