Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6352
Authors: Budillon, G.* 
Lo Bue, N.* 
Siena, G.* 
Spezie, G.* 
Title: Hydrographic characteristics of water masses and circulation in the Northern Ionian Sea
Journal: DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY 
Series/Report no.: 5-6/57( March 2010)
Publisher: Elsevier
Issue Date: Mar-2010
DOI: 10.1016/j.dsr2.2009.08.017
Keywords: Hydrography
Currents,
Ionian Sea;
Apulian Plateau
Subject Classification03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring 
Abstract: The hydrography of intermediate and deep-water masses in the Northern Ionian Sea (Apulian Plateau) was studied through four quasi-synoptic multidisciplinary surveys carried out in 2004–2006 as an ancillary oceanographic activity in the frame of the APLABES project. This area plays a crucial role for the entire Mediterranean Basin, being influenced by the water outflow of Adriatic origin, which, under severe winter conditions, is a primary source of dense water for the Eastern Mediterranean. At the end of the 1980s such outflow showed a different behavior, and only in the recent years has a gradual re-establishing of the former condition been detected. As such, the Adriatic Sea has regained its role as a main source of the East Mediterranean Deep Water, which was temporarily inhibited during the well-known Eastern Mediterranean Transient which progressively modified the intermediate and deep layers of the Mediterranean Sea. The general structure of water masses was similar through the investigated period, but interesting differences within the bottom layer have been detected. The interaction of the different water types present in the basin is reviewed by means of property–property plots, vertical sections, isopycnal analyses and using an Optimum Multiparameter Analysis (OMP), which is an objective method to measure the mixing of water masses. Due to the lack of any direct information about the dynamics of the water column in the area of the Apulian Plateau during the whole analyzed period, the classical method to infer the baroclinic velocity from the mass field has been applied to hydrographic data. The well-known indeterminacy of this method due to the barotropic component of the velocity field has been resolved using a short time series of current velocities acquired synoptically by a mooring located in the northern part of the studied area. The wavelet transform was adopted for localizing and quantifying the variability of currents simultaneously in both frequency and time domains. The presence of the Adriatic Deep Water close to the bottom was detected on all four surveys, with different signature as underlined by the objectively analysis (with the Optimum Multiparameter Analysis) of the thermohaline field. A core of cold, less-saline and oxygenated water of Adriatic origin coming from the Otranto Channel was identified. This water mass moved in geostrophic balance along the isobaths at 600–1000 m depth at the isopycnal surface of 29.18 kg m−3, not being dense enough to reach the deeper layers of the Ionian Basin, carrying 0.27–0.36 Sv.
Appears in Collections:Article published / in press

Files in This Item:
File Description SizeFormat Existing users please Login
DSRII_2010.pdf2.08 MBAdobe PDF
Show full item record

WEB OF SCIENCETM
Citations 20

28
checked on Feb 10, 2021

Page view(s)

272
checked on Apr 20, 2024

Download(s)

37
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric