Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6319
DC FieldValueLanguage
dc.contributor.authorallScoccimarro, Enrico; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallGualdi, Silvio; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallBellucci, Alessio; CMCCen
dc.contributor.authorallSanna, Antonella; CMCCen
dc.contributor.authorallOddo, Paolo; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallNavarra, Antonio; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.date.accessioned2010-12-13T12:24:31Zen
dc.date.available2010-12-13T12:24:31Zen
dc.date.issued2010-05en
dc.identifier.urihttp://hdl.handle.net/2122/6319en
dc.description.abstractThis study investigates the Tropical Cyclone (TC) effect on the northern hemisphere Ocean Heat Transport (OHT) and the possible changes that greenhouse induced global warming might generate in the characteristics of the TC-induced OHT (TCiOHT). The analysis has been performed using 20C3M (20th Century) and A1B (21st Century) IPCC scenario climate simulations obtained running a fully coupled high-resolution global general circulation model named CMCC_MED. The Atmospheric model component has a T159 horizontal resolution and 31 vertical levels. The Ocean model component has a horizontal resolution ranging from 2 degrees to 0.5 degrees near the equator and 31 vertical levels. The capability of the model to reproduce a reasonably realistic TC climatology has been assessed by comparing the model results from the simulation of the 20th Century with observations. TC detection method has been implemented thanks to the TC-MIP project. The model appears to be able to simulate tropical cyclone-like vortices with many features similar to the observed TCs. The simulated TC activity exhibits realistic structure, geographical distribution and interannual variability, suggesting that the model is able to reproduce the major basic mechanisms that link the TC activity with the large scale circulation. The TC-induced ocean cooling is well represented and the resulting column-integrated ocean heating makes the poleward OHT larger in the subtropics and decreases the poleward heat transport out of the deep tropics. This effect, investigated looking at the 100 most intense Northern Hemisphere TCs, is strongly correlated to the TC-induced momentum flux at the surface of the ocean: the winds associated to the TCs significantly weaken the trade winds in the 5-18N latitude belt and reinforce them in the 18-30N band. TCs frequency and intensity appear to be substantially stationary through the whole 1950-2069 period. The effect of the TCs on the OHT is overall less pronounced in the 21st century when compared to the 20th century.en
dc.language.isoEnglishen
dc.relation.ispartof29th conference on hurricanes and tropical meteorologyen
dc.subjectTropical cyclonesen
dc.subjectocean heat transporten
dc.titleEffect of Tropical Cyclones on Ocean Heat Transport as  simulated by a High Resolution Coupled GCMen
dc.typeOral presentationen
dc.description.statusUnpublisheden
dc.subject.INGV01. Atmosphere::01.01. Atmosphere::01.01.02. Climateen
dc.description.ConferenceLocationTucson - Arizonaen
dc.relation.referencesBellucci A., S. Gualdi, E. Scoccimarro and A. Navarra, 2008: NAO – ocean circulation interactions in a coupled general circulation model. Clim. Dyn., 31, 7-8, pp. 759-777. DOI 10.1007/s00382-008-0408-4. Bender M.A., I. Ginis, and Y. Kurihara, 1993: Numerical simulations of tropical cyclone–ocean interaction with a high resolution coupled model. J. Geophys. Res., 98, 23 245–23 263. Bengtsson L., M. Botzet, M. Esch, 1995: Hurricane-type vortices in a general-circulation model. Tellus-A, 47, 175-196. Bengtsson L., M. Botzet, M. Esch, 1996: Will greenhouse gas-induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes? Tellus-A, 48, 57-73. Black P.G., 1983: Ocean temperature change induced by tropical cyclones, Ph.D. dissertation, 278 pp., Pennsylvania State University, University Park. Boccaletti G., R. Ferrari, A. Adcroft, D. Ferreira, and J. Marshall, 2005: The vertical structure of ocean heat transport, Geophys. Res. Lett., 32, L10603, doi:10.1029/2005GL022474. Camargo S.J., A.G. Barnston, and S.E. Zebiak, 2004: Properties of Tropical Cyclones in atmospheric general circulation models. IRI Tech. Rep. 04-02, International Research Institute for Climate Prediction, Palisades, N.Y. 72 pp. Chan J.C.L.,Y. Duan and L. K. Shay, 2001: Tropical cyclone intensity change from a simple ocean–atmosphere coupled model. J. Atmos. Sci., 58, 154–172. Chang S.W. and F.. A. Anthes, 1979: The mutual response of the tropical cyclone and the ocean, J. Phys. Oceanogr., 9, 128-135. Chauvin F., J.-F. Royer and M. Deque, 2006: Response of hurricane-type vortices to global warming as simulated by ARPEGE-Climat at high resolution. Clim. Dyn., 27, 377-399. Elsner J.B., P. Kossin and T.H. Jagger, 2008: The increasing intensity of the strongest tropical cyclones. Nature, 455, 92-95. Emanuel K.A., 1987: The dependence of hurricane intensity on climate. Nature, 326, 483-485. Emanuel K.A., 2001: Contribution of tropical cyclones to meridional heat transport by the oceans, Journal of Geophysical Research, 106 (D14), 14,771–14,781. Emanuel K.A., 2003: Tropical Cyclones. Annu. Rev. Earth Planet. Sci., 31, 75-104. Emanuel K.A., 2005: Increasing destructiveness of tropical Cyclones over the past 30 years. Nature, 436, 686-688. Emanuel K.A., R. Sundararajan and J. Wiliams, 2008: Hurricanes and Global Warming: Results from Downscaling IPCC AR4 Simulations. Bull. Am. Meteor. Soc., 89, 347-367. DOI:10.1175/BAMS-89-3-347 Fedorov A.V., C.M. Brierley, K. Emanuel, 2010: Tropical cyclones and permanent El Nino in the early Pliocene epoch. Nature, 463, 1066-1070. Fichefet T, M.A. Morales-Maqueda, 1999: Modeling the influence of snow accumulation and snow-ice formation on the seasonal cycle of the Antarctic sea-ice cover. Clim. Dyn., 15, 251-268. Fogli P.G., E. Manzini, M. Vichi, A. Alessandri, L. Patara, S. Gualdi, E. Scoccimarro, S. Masina and A. Navarra, 2009: INGV-CMCC Carbon (ICC): A Carbon Cycle Earth System Model. CMCC Technical Reports 61. Gent P.R. and J.C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Ocean., 20, 150-155. Gray W.M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D.B. Shaw (Ed.), Royal Meteorological Society, 155-218. Gualdi S., Scoccimarro E., Navarra A., 2008: Changes in Tropical Cyclone Activity due to Global Warming: Results from a High-Resolution Coupled General Circulation Model. J. of Clim., 21, 5204–5228 Gualdi et al., 2009: CMCC_MED reference in preparation Guilyardi E., 2006: El Nino–mean state–seasonal cycle interactions in a multi-model ensemble. Clim. Dyn., 26, 329-348. Hu A. and G. A. Meehl, 2009: Effect of the Atlantic hurricanes on the oceanic meridional overturning circulation and heat transport. Geophys. Res. Lett, 36, L03702, doi:10.1029/2008GL036680. Jansen M and R. Ferrari , 2009: Impact of the latitudinal distribution of tropical cyclones on ocean heat transport. Geophys. Res. Lett, 36, L06604, doi:10.1029/2008GL036796. Kleinschmidt E. Jr., 1951: Grundlagen einer Theorie der tropischen Zyklonen. Arch. Meteor. Geophys. Bioklimatol., 4A, 53–72. Knutson T.R., JJ Sirutis, ST Garner et al., 2008: Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions. Nature Geoscience, 1, 359-364. Knutson T.R., R.E. Tuleya, W. Shen and I. Ginis, 2001: Impact of CO2-induced warming on hurricane intensities simulated in a hurricane model with ocean coupling. J. of Clim., 14, 2458-2468. Landsea C.W., 2007: Counting Atlantic Tropical Cyclones Back to 1900. EOS, 88, 197-202. Lin S.J., and R. B. Rood, 1996: Multidimensional flux form semi-Lagrangian transport. Mon. Wea. Rev., 124, 2046-2068. Liu L. L., W. Wang and R. X. Huang, 2008: The mechanical energy input to the ocean induced by tropical cyclones, J. Phys. Oceanogr., 38, 1253–1266. Madec G., 2008: NEMO ocean engine. Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 27 ISSN No 1288-1619. Madec G., P. Delecluse, M. Imbard, and C. Levy, 1998: OPA 8.1 Ocean General Circulation Model reference manual, Internal Rep. 11, Inst. Pierre-Simon Laplace, Paris, France. McDonald R.E., D.G. Bleaken, D.R. Cresswell, 2005: Tropical storms: representation and diagnosis in climate models and the impacts of climate change. . Clim. Dyn., 25, 19-36, doi:10.1007/s00382-004-0491-0 Meehl G.A., H. Teng and G. Branstator, 2006: Future changes of El Niño in two global coupled climate models. Clim. Dyn., 26, 549–566. Mlawer E. J. et al. 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave . J. Geophys. Res., 102, 16663–16682. National Weather Service Instruction, 2009: Operations and Services Tropical Cyclone Weather Services Program, NWSPD 10-6 10-604. Nordeng T.E., 1994: Extended versions of the convective parametrization scheme at ECMWF and their impact on the mean and transient activity of the model in the Tropics. ECMWF Research Department, Technical Memorandum No. 206. Reading, UK, 41 pp. Oddo P., M. Adani, N. Pinardi, C. Fratianni and D. Pettenuzzo, 2009: Nested atlantic-mediterranean sea general circulation model for operational forecasting. Ocean Science, 5, 461-473. Oouchi K., J. Yoshimura, H. Yoshimura, R. Mizuta, S. Kusunoki, and N.A. Noda, 2006: Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: Frequency and wind intensity analyses. J. Meteor. Soc. Japan, 84, 259-276. Pasquero C. and K. Emanuel, 2008: Tropical cyclones and transient upper-ocean warming, J. Clim., 21, 149– 162. Peterson T.C., M.O. Baringer, eds., 2009: State of the climate in 2008. Special Supplement to the Bulletin of the American Meteorological Society, 90, 8, 554. Pezza A.B. and I Simmonds, 2005: The first South Atlantic hurricane: Unprecedented blocking, low shear and climate change. Geophys. Res. Lett., 32, L15712, doi:10.1029/2005GL023390. Price J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr. 11, 153–175 Rayner N.A., D.E. Parker, E.B. Horton, C.K. Folland, L.V. Alexander, D.P. Rowell, E.C. Kent and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, D14, 4407, doi:10.1029/2002JD002670. Randall, D.A., R.A. Wood, S. Bony, R. Colman, T. Fichefet, J. Fyfe, V. Kattsov, A. Pitman, J. Shukla, J. Srinivasan, R.J. Stouffer, A. Sumi and K.E. Taylor, 2007: Climate Models and Their Evaluation. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Riehl H., 1950: A model of hurricane formation. J. Appl. Phys., 21, 917-925. Roeckner E., R. Brokopf, M. Esch, M. Giorgetta, S. Hagemann, L. Kornblueh, E. Manzini, U. Schlese, , and U. Schulzweida, 2006: Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model, J. of Clim., 19, 3771–3791. Roullet G. and G. Madec, 2000: Salt conservation, free surface, and varying levels: a new formulation for ocean general circulation models. J. Geophys. Res, 105, 23927-23942. Royer J.-F., F. Chauvin, B. Timbal, P Araspin, and D. Grimal, 1998: A GCM study of the impact of greenhouse gas increase on the frequency of occurrence of tropical cyclones. Clim Dyn., 38, 307-343. Schade L. R. and K. A. Emanuel, 1999: The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere–ocean model. J. Atmos. Sci., 56, 642– 651. Sriver R. L. and M. Huber (2007): Observational evidence for an ocean heat pump induced by tropical cyclones, Nature, 447, 577 – 580, doi:10.1038/nature05785. Sriver R. L., 2010: Tropical cyclones in the mix. Nature, 463, 1032-1033. Sugi M., A. Noda, N. Sato, 2002: Influence of global warming on tropical cyclone climatology: an experiment with the JMA global model. J. Meteor. Soc. Japan, 80, 249-272. Sutyrin G.G. and A. P. Khain, 1979: Interaction of the ocean and the atmophere in the area of moving tropical cyclone, Dokl. Akad. Nauk SSSR, 249, 467.-470, 1979 Tiedtke M., 1989: A comprehensive mass flux scheme for cumulus parametrization in large-scale models. Mon. Weather Rev., 117, 1779-1800. Trenberth K., Caron J.M., 2001: Estimates of Meridional Atmosphere and Ocean Heat Transports. J. of Clim, 14, 3433-3443. Trenberth K., 2005: Uncertainty in Hurricanes and Global Warming. Science, 308, 1753-1754. Valcke S., 2006: OASIS3 User Guide (prism_2-5). PRISM Support Initiative Report No 3, 64 pp. Vecchi, GA, B.J. Soden, 2007a: Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450, 1066-U9. Vecchi G.A., B.J. Soden, 2007b: Increased tropical Atlantic wind shear in model projections of global warming. Geophys. Res. Lett., 34, L08702. Vecchi G.A., B.J. Soden, 2007c: Global Warming and the Weakening of the Tropical Circulation. J. of Clim., 20, 4316-4340. Vichi M., E. Manzini, P.G. Fogli, A. Alessandri, L. Patara, S. Masina, S. Gualdi, E. Scoccimarro and A. Navarra, 2009: Global and regional ocean carbon uptake and climate change: Sensitivity to an aggressive mitigation scenario. Submitted. Walsh K.J.E, 1997: Objective detection of tropical cyclones in high-resolution analyses. Mon. Weather Rev., 120, 958-977. Walsh K.J.E. and B.F. Ryan, 2000: Tropical cyclone intensity increase near Australia as a result of climate change. J. of Clim., 13, 3029-3036. Walsh K.J.E., M. Fiorino, C.W. Landsea and K.L. McInnes, 2007: Objectively determined resolution-dependent threshold criteria for the detection of tropical cyclones in climate models and reanalyses. .J. of Clim., 20, issue 10, p. 2307. Webster P.J., G.J. Holland, J.A. Curry, and H.-R. Chang, 2005: Changes in Tropical Cyclones Number, Duration and Intensity in a Warming Environment. Science, 309, 1844-1846. Willoughby H.E., J.A. Clos, M.G. Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395-411. Xie P., and P. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bul l. Am. Meteor. Soc., 78, 2539–2558. Yoshimura J., M. Sigu, and A. Noda, 2006: Influence of greenhouse warming on tropical cyclone frequency. J. Meteor. Soc. Japan, 84, 405-428.en
dc.description.obiettivoSpecifico3.7. Dinamica del clima e dell'oceanoen
dc.description.fulltextopenen
dc.contributor.authorScoccimarro, Enricoen
dc.contributor.authorGualdi, Silvioen
dc.contributor.authorBellucci, Alessioen
dc.contributor.authorSanna, Antonellaen
dc.contributor.authorOddo, Paoloen
dc.contributor.authorNavarra, Antonioen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentCMCCen
dc.contributor.departmentCMCCen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
item.openairetypeOral presentation-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptCMCC-
crisitem.author.deptCMCC-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptCMCC, Italy-
crisitem.author.orcid0000-0001-7987-4744-
crisitem.author.orcid0000-0001-7777-8935-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent01. Atmosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Conference materials
Files in This Item:
File Description SizeFormat
scoccimarro_TCiOHT_2.pdforal presentation4.32 MBAdobe PDFView/Open
Show simple item record

Page view(s)

155
checked on Apr 17, 2024

Download(s) 50

258
checked on Apr 17, 2024

Google ScholarTM

Check