Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6313
DC FieldValueLanguage
dc.contributor.authorallPiccinini, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallDi Bona, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallLucente, F. P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallLevin, V.; Rutgers Universityen
dc.contributor.authorallPark, J.; Yale Universityen
dc.date.accessioned2010-12-13T11:21:58Zen
dc.date.available2010-12-13T11:21:58Zen
dc.date.issued2010-09-14en
dc.identifier.urihttp://hdl.handle.net/2122/6313en
dc.descriptionAn edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union.en
dc.description.abstractWe analyze P and S wave spectra from moderate‐ to deep‐focus teleseisms recorded at the Retreating‐Trench, Extension, and Accretion Tectonics (RETREAT) temporary broadband seismic network to assess the variations of the Earth mantle attenuation in the northern Apennines region (Italy). For each earthquake, we compute the ratio between the spectrum at each station and the average spectrum, in order to estimate t* residuals (Δt*) from the spectral ratio decay. The number and distribution of the teleseisms useable for the P wave t* calculation allow for a gross azimuthal analysis; although the (Δt*) values at single station display, in most cases, azimuthal‐dependent fluctuations, their overall distribution shows a partition of the study region into two main areas, whose gross features remain almost unchanged over the whole azimuthal range. This partition is confirmed by the S wave t* mean values, computed for each station over the set of useable events. We distinguish a relatively high attenuation area on the western, Tyrrhenian side and a relatively low attenuation area on the eastern, Adriatic side. By correlating our Δt* estimates and the velocity structure derived from the existing tomographic models, we compute the ranges of possible P and S wave Q values in the mantle wedge above the Apennines slab (on the Tyrrhenian side) and in the asthenosphere below the Adriatic region. Furthermore, the determined attenuation properties are used to draw some inferences on the thermal state of the uppermost mantle and on the physical properties of the tectonic elements, which constitute the subduction system in the region.en
dc.language.isoEnglishen
dc.publisher.nameAGUen
dc.relation.ispartofJournal of Geophysical Researchen
dc.relation.ispartofseries/115 (2010)en
dc.subjectNorthern Apennineen
dc.subjectSlaben
dc.subjectRETREATen
dc.subjectattenuationen
dc.subjectmantleen
dc.titleSeismic attenuation and mantle wedge temperature in the northern Apennine subtuction zone (Italy) from teleseismic body wave spectra.en
dc.typearticleen
dc.description.statusPublisheden
dc.description.pagenumberB09309en
dc.subject.INGV04. Solid Earth::04.01. Earth Interior::04.01.03. Mantle and Core dynamicsen
dc.subject.INGV04. Solid Earth::04.01. Earth Interior::04.01.05. Rheologyen
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methodsen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamicsen
dc.identifier.doi10.1029/2009JB007180en
dc.relation.referencesAki, K., and P. G. Richards (1980), Quantitative Seismology: Theory and Methods, 557 pp., W. H. Freeman, New York. Baldi P., Bellani, S., Ceccarelli, A., Fiordelisi, A., Squarci, P. and Taffi, L., 1995, Geothermal anomalies and structural features of southern Tuscany – World Geothermal Congress Proceedings - Florence, Italy, May 1995, 1287-1291. Batini, F., Brogi, A., Lazzarotto, A., Lotta, D. and Pandeli, E., 2003. Geological features of the Larderello-Travale and Mt. Amiata geothermal areas (southern Tuscany, Italy). Episodes, 26, 239–244. Brunét, C., Monié, P., Jolivet, L. and Cadet, J.P., 2000, Migration of compression and extension in the Tyrrhenian Sea, insights from 40Ar/39Ar ages on micas along a transect from Corsica to Tuscany, Tectonophyics, 321, 127-155. Carmignani L., Decandia F.A., Fantozzi P.L., Lazzarotto A., Liotta D. and Meccheri M., 1994, Tertiary extensional tectonics in Tuscany (Northern Apennines, Italy), Tectonophysics, 238, 295-315. Dziewonski, A. M., and D. L. Anderson (1981), Preliminary reference Earth model, Phys. Earth Planet. Inter., 25, 297– 356. Eberhart-Phillips, D., and M. Chadwick (2002), Three-dimensional attenuation model of the shallow Hikurangi subduction zone in the Raukumara Peninsula, New Zealand, J. Geophys. Res., 107(B2), 2033, doi:10.1029/2000JB000046. Eberhart-Phillips, D., M. Chadwick, and S. Bannister (2008), Three-dimensional attenuation structure of central and southern South Island, New Zealand, from local earthquakes, J. Geophys. Res., 113, B05308, doi:10.1029/2007JB005359. Evans, J. R., and U. Achauer, Teleseismic velocity tomography using the ACH method: Theory and application to continental-scale studies, in Seismic Tomography: Theory and Practice, edited by H. M. Iyer and K. Hirahara, pp. 319-360, Chapman and Hall, New York, 1993. Ferrari, L., Conticelli, S., Burlamacchi, L. and Manetti, P., 1996, Volcanological evolution of the Monte Amiata, Southern Tuscany: New geological and petrochemical data, Acta Vulcanologica, 8, 41-56. Haberland, C., and A. Rietbrock (2001), Attenuation tomography in the western central Andes: A detailed insight into the structure of a magmatic arc, J. Geophys. Res., 106, 11,151–11,167. Jackson, I., M. S. Paterson, and J. D. F. Gerald (1992), Seismic wave dispersion and attenuation in Aheim dunite: An experimental study, Geophys. J. Int., 108, 517– 534. Jackson, I., J. D. FitzGerald, U. H. Faul, and B. H. Tan (2002), Grain-size-sensitive seismic wave attenuation in polycrystalline olivine, J. Geophys. Res., 107(B12), 2360, doi:10.1029/2001JB001225. Karato, S., and H. A. Spetzler (1990), Defect microdynamics in minerals and solid-state mechanisms of seismic wave attenuation and velocity dispersion in the mantle, Rev. Geophys., 28, 399– 421. Karato, S. (2003), Mapping water content in the upper mantle, in Inside the Subduction Factory, Geophys. Monogr. Ser., vol. 138, edited by J. M. Eiler, pp. 135–152, AGU, Washington, D. C. Kern, H., B. Liu, and P. Till (1997), Relationship between anisotropy of P and S wave velocities and anisotropy of attenuation in serpentinite and amphibole, J. Geophys. Res., 102(B2), 3051–3065, doi:10.1029/96JB03392. Lawrence, J. F., D. A. Wiens, A. A. Nyblade, S. Anandakrishan, P. J. Shore, and D. Voigt (2006), Upper mantle thermal variations beneath the Transantarctic Mountains inferred from teleseismic S-wave attenuation, Geophys. Res. Lett., 33, L03303, doi:10.1029/2005GL024516. Nakajima, J., and A. Hasegawa, Estimation of thermal structure in the mantle wedge of northeastern Japan from seismic attenuation data, Geophys. Res. Lett., 30(14), 1760, doi:10.1029/ 2003GL017185, 2003. Oki, S., and P. M. Shearer (2008), Mantle Q structure from S-P differential attenuation measurements, J. Geophys. Res., 113, B12308, doi:10.1029/2007JB005567. Piromallo, C., and A. Morelli (2003), P wave tomography of the mantle under the Alpine- Mediterranean area, J. Geophys. Res., 108(B2), 2065, doi:10.1029/2002JB001757. Rychert, C. A., K. M. Fischer, G. A. Abers, T. Plank, E. Syracuse, J. M. Protti, V. Gonzalez, and W. Strauch (2008), Strong along-arc variations in attenuation in the mantle wedge beneath Costa Rica and Nicaragua, Geochem. Geophys. Geosyst., 9, Q10S10, doi:10.1029/2008GC002040. Sato, H., I. Sacks, T. Murase, G. Muncill, and H. Fukuyama (1989), Qp-melting temperature relation in peridoite at high pressure and temperature: Attenuation mechanism and implications for the mechanical properties of the upper mantle, J. Geophys. Res., 94, 10,647– 10,661. Serri, G., Innocenti, F., and Manetti, P., 1993, Geochemical and petrological evidence of the subduction of deliminated Adriatic continental lithosphere in the genesis of the Neogene- Quaternary magmatism of central Italy: Tectonophysics, v. 223, p. 117–147, doi: 10.1016/0040-1951(93)90161-C. Speranza, F., and M. Chiappini, Thick-skinned tectonics in the external Apennines, Italy: New evidence from magnetic anomaly analysis, J. Geophys. Res., 107(B11), 2290, doi:10.1029/2000JB000027, 2002. Stachnik, J. C., G. A. Abers, and D. H. Christensen (2004), Seismic attenuation and mantle wedge temperatures in the Alaska subduction zone, J. Geophys. Res., 109, B10304, doi:10.1029/2004JB003018. Takanami, T., S. Sacks, and A. Hasegawa (2000), Attenuation structure beneath the volcanic front in northeastern Japan from broad-band seismograms, Phys. Earth Planet. Inter., 121, 339–357. Tsumura, N., S. Matsumoto, S. Horiuchi, and A. Hasegawa, Three-dimensional attenuation structure beneath the northeastern Japan arc estimated from spectra of small earthquakes, Tectonophysics, 319, 241–260, 2000. VanDecar, J. C., and R. S. Crosson (1990), Determination of teleseismic relative phase arrival times using multi-channel cross-correlation and least squares, Bull. Seismol. Soc. Am, 80(1),150-169. Venkataraman, A., A. A. Nyblade, and J. Ritsema (2004), Upper mantle Q and thermal structure beneath Tanzania, East Africa from teleseismic P wave spectra, Geophys. Res. Lett., 31, L15611, doi:10.1029/2004GL020351.en
dc.description.obiettivoSpecifico3.3. Geodinamica e struttura dell'interno della Terraen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorPiccinini, D.en
dc.contributor.authorDi Bona, M.en
dc.contributor.authorLucente, F. P.en
dc.contributor.authorLevin, V.en
dc.contributor.authorPark, J.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentRutgers Universityen
dc.contributor.departmentYale Universityen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.orcid0000-0002-1826-646X-
crisitem.author.orcid0000-0002-2273-326X-
crisitem.author.orcid0000-0002-8717-1720-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2009JB007180.pdf1.93 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

13
checked on Feb 10, 2021

Page view(s) 5

608
checked on Apr 24, 2024

Download(s)

31
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric