Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6273
DC FieldValueLanguage
dc.contributor.authorallCampion, R.; Université Libre de Bruxelles, Département des Sciences de la Terre et de l'Environnement.en
dc.contributor.authorallSalerno, G. G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallCoheur, P. F.; Université Libre de Bruxelles, Chimie Quantique et Photophysique,en
dc.contributor.authorallHurtmans, D.; Université Libre de Bruxelles, Chimie Quantique et Photophysiqueen
dc.contributor.authorallClarisse, L.; Université Libre de Bruxelles, Chimie Quantique et Photophysiqueen
dc.contributor.authorallKazahaya, K.; Geological Survey of Japan, Institute of Advanced Science and Technology,en
dc.contributor.authorallBurton, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.authorallCaltabiano, T.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallClerbaux, C.; Université Libre de Bruxelles, Chimie Quantique et Photophysique,en
dc.contributor.authorallBernard, A.; Université Libre de Bruxelles, Département des Sciences de la Terre et de l'Environnement.en
dc.date.accessioned2010-12-01T07:55:43Zen
dc.date.available2010-12-01T07:55:43Zen
dc.date.issued2010en
dc.identifier.urihttp://hdl.handle.net/2122/6273en
dc.description.abstractWe present a new method for measuring SO2 with the data from the ASTER (Advanced Spaceborne Thermal Emission and Reflectance radiometer) orbital sensor. The method consists of adjusting the SO2 column amount until the ratios of radiance simulated on several ASTER bands match the observations. We present a sensitivity analysis for this method, and two case studies. The sensitivity analysis shows that the selected band ratios depend much less on atmospheric humidity, sulfate aerosols, surface altitude and emissivity than the raw radiances. Measurements with b25% relative precision are achieved, but only when the thermal contrast between the plume and the underlying surface is higher than 10 K. For the case studies we focused on Miyakejima and Etna, two volcanoes where SO2 is measured regularly by COSPEC or scanning DOAS. The SO2 fluxes computed from a series of ten images of Miyakejima over the period 2000–2002 is in agreement with the long term trend of measurement for this volcano. On Etna, we compared SO2 column amounts measured by ASTER with those acquired simultaneously by ground-based automated scanning DOAS. The column amounts compare quite well, providing a more rigorous validation of the method. The SO2 maps retrieved with ASTER can provide quantitative insights into the 2D structure of non-eruptive volcanic plumes, their dispersion and their progressive depletion in SO2.en
dc.description.sponsorshipR.C. was supported by a grant from F.R.I.A (Fond pour la Recherche Industrielle et Appliquée). GGS acknowledges a PhD grant funded by the project “Sviluppo di sistemi di monitoraggio” funded by Dipartimento di Protezione Civile della Regione Sicilia, INGV (Istituto Nazionale di Geofisica e Vulcanologia, sezione di Catania—Italy) and NOVAC (Network for Observation of Volcanic and Atmospheric Change) EU-funded FP6 project no. 18354. P-F. C. is research associate with FRS-FNRS and benefited from its financial support (F.4511.08).en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofJournal of Volcanology and Geothermal Researchen
dc.relation.ispartofseries/194 (2010)en
dc.subjectremote sensing, SO2, ASTER, DOAS, Etna, Miyakejimaen
dc.titleMeasuring volcanic degassing of SO2 in the lower troposphere with ASTER band ratiosen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber42-54en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.identifier.doi10.1016/j.jvolgeores.2010.04.010en
dc.relation.referencesAndres, R., Kasgnoc, A.D., 1997. A time-averaged inventory of subaerial volcanic sulfur emissions. J. Geophys. Res. 103 (D19), 25251–25261. Arai, K., Tonooka, H., 2005. Radiometric performance evaluation of ASTER VNIR, SWIR and TIR. IEEE Transactions on Geoscience and Remote Sensing 43 (12), 2725–2732. Bluth, G.J.S., Shannon, J.M., Watson, I.M., Prata, A.J., Realmuto, V.J., 2007. Development of an ultra-violet digital camera for volcanic SO2 imaging. J. Volcanol. Geotherm. Res. 161, 47–56. Bobrowski, N., Hönninger, G., Lohberger, F., Platt, U., 2006. IDOAS: a new monitoring technique to study the 2D distribution of volcanic gas emissions. Journ. Volcano. Geotherm. Res 150, 329–338. Caltabiano, T., Romano, R., Budetta, G., 1994. SO2 flux measurements at Mount Etna (Sicily). J. Geophys. Res. 99 (12), 12,809–12,819. Carn, S.A., Krueger, A.J., Arellano, S., Krotkov, N.A., Yang, K., 2008. Daily monitoring of Ecuadorian volcanic degassing from space. J. Volcanol. Geotherm. Res. 176, 141–150. Clarisse, L., Coheur, P.F., Prata, A.J., Hurtmans, D., Razavi, A., Phulpin, T., Hadji-Lazaro, J., Clerbaux, C., 2008. Tracking and quantifying volcanic SO2 with IASI, the September 2007 eruption at Jebel at Tair. Atmos. Chem. Phys. 8, 7723–7734. L. Clarisse, D. Hurtmans, A.J. Prata, F. Karagulian, C. Clerbaux, and P.F. Coheur. Retrieving aerosol properties from nadir observed high resolution spectra. Applied Optics, in review, 2010 Clough, S.A., Shephard, M.W., Mlawer, E.J., Delamere, J.S., Iacono, M.J., Cady-Pereira, K., Boukabara, S., Brown, P.D., 2005. Atmospheric radiative transfer modeling: a summary of the AER codes, short communication. J. Quant. Spectrosc. Radiat. Transfer 91, 233–244. Coheur, P.-F., Barret, B., Turquety, S., Hurtmans, D., Hadji-Lazaro, J., Clerbaux, C., 2005. Retrieval and characterization of ozone vertical profiles from a thermal infrared nadir sounder. J. Geophys. Res. 110, D24303. Corradini, S., Pugnaghi, S., Teggi, S., Buongiorno, M.F., Bogliolo, M.P., 2003. Will ASTER see the Etna SO2 plume? Int. J. Remote Sens. 24 (6), 1207–1218. Dalton, M.P., Watson, I.M., Nadeau, P.A., Werner, C., Morrow, W., Shannon, J.M., 2009. Assessment of the UV camera sulfur dioxide retrieval for point source plumes. J. Volcanol. Geotherm. Res.. doi:10.1016/j.jvolgeores.2009.09.013 Elias, T., Sutton, A.J., Oppenheimer, C., Horton, K.A., Garbeil, H., Tsanev, V., McGonigle, A.J.S., Williams-Jones, G., 2006. Intercomparison of COSPEC and two miniature ultraviolet spectrometer systems for SO2 measurements using scattered sunlight. Bull. Vol. 68, 313–322. Galle, B., Oppenheimer, C., Geyer, A., McGonigle, A.S.J., Edmonds, M., Horrocks, L.A., 2002. A miniaturised ultraviolet spectrometer for remote sensing of SO2 fluxes: a new tool for volcano surveillance. J. Volcanol. Geotherm. Res. 119, 241–254. Graf, H.-F., Feichter, J., Langmann, B., 1997. Volcanic sulfur emissions: estimates of source strength and its contribution to the global sulfate distribution. J. Geophys. Res. 102, 10727–10738. JPL HysPIRI group, 2009, NASA 2008 HyspIRI Whitepaper and Workshop Report, JPL Publication 09-19, downloadable at http://hyspiri.jpl.nasa.gov/downloads/public/ 2008%20HyspIRI%20Whitepaper%20and%20Science%20Workshop%20Report-r2.pdf. Kazahaya, K., Shinohara, H., Uto, K., Odai, M., Nakahori, Y., Mori, H., Iino, H., Miyashita, M., Hirabayashi, J., 2004. Gigantic SO2 emission from Miyakejima volcano, Japan, caused by caldera collapse. Geology v.32 (no. 5), 425–428. Kazahaya, R., Mori, T., Kazahaya, K., Hirabayashi, J., 2008. Computed tomography reconstruction of SO2 concentration distribution in the volcanic plume of Miyakejima, Japan, by airborne traverse technique using three UV spectrometers. Geophys. Res. Lett. 35, L13816. Le Guern, F., 1982. Les débits de CO2 et SO2 volcaniques dans l'atmosphère. Bull. Volc. 45, 197–202. Mather, T.A., Tsanev, V.I., Pyle, D.M., McGonigle, A.J.S., Oppenheimer, C., Allen, A.G., 2004. Characterization and evolution of tropospheric plumes from Lascar and Villarrica volcanoes, Chile. J. Geophys. Res. 109, D21303. McGonigle, A.J.S., Delmelle, P., Oppenheimer, C., Tsanev, V.I., Delfosse, T., Williams- Jones, G., Horton, K., Mather, T.A., 2004. SO2 depletion in tropospheric volcanic plumes. Geophys. Res. Lett. 31, L13201. doi:10.1029/2004GL019990. Mori, T., Burton, M., 2006. The SO2 camera: a simple, fast and cheap method for groundbased imaging of SO2 in volcanic plumes. Geophys. Res. Lett. 33, L24804. Newcomb, G., Millán, M.M., 1970. Theory, applications and results of the long-line correlation spectrometer. IEEE Trans. on Geoscience Electronics 8, 149–157. Oppenheimer, C., Francis, P., Stix, J., 1998. Depletion rates of sulfur dioxide in tropospheric volcanic plumes. Geophys. Res. Lett. 25 (14), 2671–2674. Pieri, D., Abrams, M., 2004. ASTER watches the world's volcanoes: a new paradigm for volcanological observations from orbit. J. Volcano. Geotherm. Res. 135, 13–28. Prata, A.J., Bernardo, C., 2007. Retrieval of volcanic SO2 column abundance from Atmospheric Infrared Sounder data. J. Geophys. Res. 112, D20204. Prata, A.J., Kerkmann, J., 2007. Simultaneous retrieval of volcanic ash and SO2 using MSG-SEVIRI measurements. Geophys. Res. Lett. 34, L05813. Pugnaghi, S., Gangale, G., Corradini, S., Buongiorno, M.F., 74–90, 2006. Mt. Etna sulfur dioxide flux monitoring using ASTER-TIR data and atmospheric observations. J. Volcano. Geotherm. Res. 152, 74–90. Realmuto, V.J., Sutton, A.J., Elias, T., 1997. Multispectral thermal infrared mapping of sulfur dioxide plumes: a case study from the East Rift Zone of Kilauea Volcano, Hawaii. J. Geophys. Res. 102 (B7), 15057–15072. Realmuto, V.J., Abrams, M., Buongiorno, M.F., Pieri, D., July 29, 1986. The use of thermal infrared image data to estimate the sulfur dioxide flux from volcanoes: a case study from Mount Etna, Sicily. J. Geophys. Res 99 (B1), 481–488. Rodriguez, L.A., Watson, I.M., Edmonds, M., Ryan, G., Hards, V.L., Oppenheimer, C., Bluth, G.J.S., 2008. SO2 loss rates in the plume emitted by Soufrière Hills volcano, Montserrat. Journ. Volcanol. Geotherm. Res. 173 (1–2), 135–147. Rothman, L.S., Gordon, I.E., Barbe, A., Benner, D.C., Bernath, P.F., Birk, M., Boudon, V., Brown, L.R., Campargue, A., Champion, J.-P., Chance, K., Coudert, L.H., Dana, V., Devi, V.M., Fally, S., Flaud, J.-M., Gamache, R.R., Goldman, A., Jacquemart, D., Kleiner, I., Lacome, N., Lafferty, W.J., Mandin, J.-Y., Massie, S.T., Mikhailenko, S.N., Miller, C.E., Moazzen- Ahmadi, N., Naumenko, O., Nikitin, A.V., Orphal, J., Perevalov, V.I., Perrin, A., Predoi- Cross, A.,Rinsland, C.P.,Rotger,M., Simecková, M., Smith,M.A.H.,Sung, K., Tashkun, S.A., Tennyson, J., Toth, R.A., Vandaele, A.C., Vander Auwera, J., 2008. The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer 82, 5–44. Salerno, G.G., Burton, M.R., Oppenheimer, C., Caltabiano, T., Tsanev, V.I., Bruno, N., 2009a. Novel retrieval of volcanic SO2 abundance from ultraviolet spectra. Journ. Volcanol. Geotherm. Res. 181, 141–153. Salerno, G.G., Burton, M.R., Oppenheimer, C., Caltabiano, T., Randazzo, D., Bruno, N., Longo, V., 2009b. Three-years of SO2 flux measurements of Mt. Etna using an automated UV scanner array: comparison with conventional traverses and uncertainties in flux retrieval. J. Volcanol. Geotherm. Res. 183, 76–83. Stoiber, R.E., Maliconico, L.L., Williams, S.N., 1983. Use of the Correlation Spectrometer at Volcanoes. In: Tazieff, H., Sabroux, J.C. (Eds.), Forecasting volcanic events. Elsevier, Amsterdam, pp. 425–444. Stoiber, R.E., Williams, S.N., Huebert, B., 1987. Annual contribution of sulfur dioxide to the atmosphere by volcanoes. J. Volcanol. and Geotherm. Res. 33, 1–8. Trunk, L, Bernard, A, 2008. Investigating crater lake warming using ASTER thermal imagery: Case studies at Ruapehu, Poás, Kawah Ijen, and Copahué Volcanoes. Journ. Volcanol. and Geotherm. Res. 178, 259–270. Urai, M., 2004. Sulfur dioxide flux estimation from volcanoes using advanced spaceborne thermal emission and reflection radiometer: a case study of Miyakejima volcano, Japan. J. Volcanol. Geotherm. Res. 134, 1–13. Watson, I.M., Oppenheimer, C., 3561–3572, 2001. Photometric observations of Mt. Etna's different aerosol plumes. Atmosph. Environm. 35, 3561–3572. Watson, I.M., Realmuto, V.J., Rose, W.I., Prata, A.J., Bluth, G.J., Gu, Y., Bader, C.E., Yu, T., 2004. Thermal infrared remote sensing of volcanic emissions using the moderate resolution imaging spectroradiometer. J. Volcanol. Geotherm. Res. 135, 75–89. Williams-Jones, G., Stix, J., Hickson, C., 2008. The COSPEC Cookbook: making SO2- Measurements at Active Volcanoes. IAVCEI, Methods in Volcanology 1 233 pp.en
dc.description.obiettivoSpecifico1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attiveen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.contributor.authorCampion, R.en
dc.contributor.authorSalerno, G. G.en
dc.contributor.authorCoheur, P. F.en
dc.contributor.authorHurtmans, D.en
dc.contributor.authorClarisse, L.en
dc.contributor.authorKazahaya, K.en
dc.contributor.authorBurton, M.en
dc.contributor.authorCaltabiano, T.en
dc.contributor.authorClerbaux, C.en
dc.contributor.authorBernard, A.en
dc.contributor.departmentUniversité Libre de Bruxelles, Département des Sciences de la Terre et de l'Environnement.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentUniversité Libre de Bruxelles, Chimie Quantique et Photophysique,en
dc.contributor.departmentUniversité Libre de Bruxelles, Chimie Quantique et Photophysiqueen
dc.contributor.departmentUniversité Libre de Bruxelles, Chimie Quantique et Photophysiqueen
dc.contributor.departmentGeological Survey of Japan, Institute of Advanced Science and Technology,en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentUniversité Libre de Bruxelles, Chimie Quantique et Photophysique,en
dc.contributor.departmentUniversité Libre de Bruxelles, Département des Sciences de la Terre et de l'Environnement.en
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptUniversité Libre de Bruxelles-
crisitem.author.deptUniversité Libre de Bruxelles, Chimie Quantique et Photophysique-
crisitem.author.deptUniversité Libre de Bruxelles-
crisitem.author.deptGeological Survey of Japan, Institute of Advanced Science and Technology,-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptUniversité Libre de Bruxelles, Chimie Quantique et Photophysique,-
crisitem.author.deptUniversité Libre de Bruxelles, Département des Sciences de la Terre et de l'Environnement.-
crisitem.author.orcid0000-0003-1638-8479-
crisitem.author.orcid0000-0002-9336-107X-
crisitem.author.orcid0000-0001-6588-7560-
crisitem.author.orcid0000-0002-1929-5326-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Campion et al., 2010.pdfpubblished paper1.38 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

36
checked on Feb 10, 2021

Page view(s)

168
checked on Apr 17, 2024

Download(s)

28
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric