Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6235
DC FieldValueLanguage
dc.contributor.authorallDe Ritis, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallDominici, R.; Department of Earth Science, Università della Calabria, Arcavacata di Rende, Italyen
dc.contributor.authorallVentura, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallNicolosi, I.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallChiappini, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallSperanza, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallDe Rosa, R.; Department of Earth Science, Università della Calabria, Arcavacata di Rende, Italyen
dc.contributor.authorallDonato, P.; Department of Earth Science, Università della Calabria, Arcavacata di Rende, Italyen
dc.contributor.authorallSonnino, M.; Department of Earth Science, Università della Calabria, Arcavacata di Rende, Italyen
dc.date.accessioned2010-11-15T08:11:05Zen
dc.date.available2010-11-15T08:11:05Zen
dc.date.issued2010en
dc.identifier.urihttp://hdl.handle.net/2122/6235en
dc.descriptionAn edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union.en
dc.description.abstractAeromagnetic data collected between the Aeolian volcanoes (southern Tyrrhenian Sea) and the Calabrian Arc (Italy) highlight a WNW‐ESE elongated positive magnetic anomaly centered on the Capo Vaticano morphological ridge (Tyrrhenian coast of Calabria), characterized by an apical, subcircular, flat surface. Results of forward and inverse modeling of the magnetic data show a 20 km long and 3–5 km wide magnetized body that extends from sea floor to about 3 km below sea level. The magnetic properties of this body are consistent with those of the medium to highly evolved volcanic rocks of the Aeolian Arc (i.e., dacites and rhyolites). In the Calabria mainland, widespread dacitic to rhyolitic pumices with calc‐alkaline affinity of Pleistocene age (1–0.7 Ma) are exposed. The tephra falls are related to explosive activity and show a decreasing thickness from the Capo Vaticano area southeastward. The presence of lithics indicates a provenance from a source located not far from Capo Vaticano. The combined interpretation of the magnetic and available geological data reveal that (1) the Capo Vaticano WNW‐ESE elongated positive magnetic anomaly is due to the occurrence of a WNW‐ESE elongated sill; (2) such a sill represents the remnant of the plumbing system of a Pleistocene volcano that erupted explosively producing the pumice tephra exposed in Calabria; and (3) the volcanism is consistent with the Aeolian products, in terms of age, magnetic signature, and geochemical affinity of the erupted products,. The results indicate that such volcanism developed along seismically active faults transversal to the general trend of the Aeolian Arc and Calabria block, in an area where uplift is maximized (∼4 mm/yr). Such uplift could also be responsible for fragmentation of the upper crust and formation of transversal faults along which seismic activity and volcanism occur.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofJournal of Geophysical Researchen
dc.relation.ispartofseries/115 (2010)en
dc.subjectaeromagnetic anomaliesen
dc.subjectvolcanic arcen
dc.subjecttectonics of the Calabrian Arcen
dc.subjectrisk assessmenten
dc.titleA buried volcano in the Calabrian Arc (Italy) revealed by high‐resolution aeromagnetic dataen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB11101en
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomaliesen
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetismen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.08. Volcanic arcsen
dc.identifier.doi10.1029/2009JB007171en
dc.relation.referencesAcquafredda, P., S. Lorenzoni, N. Minzoni, and E. Zanettin Lorenzoni (1987), Paleozoic sequence in the Stilo‐Bivongi area (central Calabria), Mem. Sci. Geol., 39, 117–127. Acquafredda, P., S. Lorenzoni, N. Minzoni, and E. Zanettin Lorenzoni (1989), Stratigraphic correlation form of the stilo area (Serre region, central Calabria, Italy), Rend. Soc. Geol. Ital., 12, 103–105. Acquafredda, P., S. Lorenzoni, and E. Zanettin Lorenzoni (1994), Paleozoic sequence and evolution of the Calabrian‐Peloritan Arc (Southern Italy), Terranova, 6, 582–594. Amodio Morelli, L., et al. (1976), L’arco Calabro‐peloritano nell’ orogene Appenninico‐Maghrebide, Mem. Sci. Geol., 17, 1–60. Antonioli, F., L. Ferranti, K. Lambeck, S. Kershaw, V. Verrubbi, and G. Dal Pra (2006), Late Pleistocene to Holocene record of changing uplift rates in southern Calabria and northeastern Sicily (southern Italy, central Mediterranean Sea), Tectonophysics, 422, 23–40. Ayuso, R. A., A. Messina, B. De Vivo, S. Russo, L. G. Woodruff, S. F. Sutter, and H. E. Belkin (1994), Geochemistry and argon thermochronology of the Variscan Sila batholith, southern Italy: Source rocks and magma evolution, Contrib. Miner. Petrol., 117, 87–109. Azzaro, R., D. Bella, L. Ferreli, A. Michetti, F. Santagati, L. Serva, and E. Vittori (2000), First study of fault trench stratigraphy at Mt. Etna volcano, Southern Italy: Understanding Holocene surface faulting along the Moscarello fault, J. Geodyn., 29, 187–210. Barberi, F., A. Gandino, A. Gioncada, P. La Torre, A. Sbrana, and C. Zenucchini (1994), The deep structure of the Eolian arc (Filicudi‐ Panarea‐Vulcano sector) in light of gravity, magnetic and volcanological data, J. Volcanol. Geotherm. Res., 61, 189–206. Barberi, G., M. T. Cosentino, A. Gervasi, I. Guerra, G. Neri, and B. Orecchio (2004), Crustal seismic tomography in the Calabrian Arc region, south Italy, Phys. Earth Planet. Int., 147, 297–314. Baranov, V., and H. Naudy (1964), Numerical calculation of the formula of reduction to the magnetic pole, Geophysics, 29, 67–79. Basili, R., G. Valensise, P. Vannoli, P. Burrato, U. Fracassi, S. Mariano, M. M. Tiberti, and E. Boschi (2008), The Database of Individual Seismogenic Sources (DISS), version 3: Summarizing 20 years of research on Italy’s earthquake geology, Tectonophysics, 453, 20–43, doi:10.1016/j. tecto.2007.04.014. Bear, G. W., H. J. Al‐Shukri, and A. J. Rudman (1995), Linear inversion of gravity data for 3‐D density distribution, Geophysics, 60, 1354–1364. Blakely, R. J. (1995), Potential Theory in Gravity and Magnetic Applications, 441 pp., Cambridge Univ. Press, Cambridge. Blanco‐Montenegro, I., R. De Ritis, and M. Chiappini (2007), Imaging and modelling the subsurface structure of volcanic calderas with highresolution aeromagnetic data at Vulcano (Aeolian Islands, Italy), Bull. Volcanol., 69(6), 643–659, doi:10.1007/s00445-006-0100-7. Bonardi, G., A. Messina, V. Perrone, S. Russo, and A. Zuppetta (1984), L’unità di stilo nel settore meridionale dell’arco calabro peloritano, Boll. Soc. Geol. Ital., 103, 279–309. Bonardi, G., W. Cavazza, V. Perrone, and S. Rossi (2001), Calabria‐ Peloritani terrane and northern Ionian Sea, in Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins, edited by G. B. Vai and I. P. Martini, pp. 287–306, Kluwer, Dordrecht. Bouillin, J. P., S. Baudelot, and C. Majestè‐Menjoulas (1984), Mise en evidence du Cambro.Ordovicien en calibre centrale (Italie). Affinités paléogéographiques et conséquences structurales, C. R. Acad. Sci. Paris, II, 298, 88–92. Bouillin, J. P., M. Menjoulas, S. Baudelot, C. Cygan, and C. Fournier Vinas (1987), Les formations paleozoîques de l’Arc Calabro‐Peloritain dans leur cadre structural, Boll. Soc. Geol. Ital., 106, 683–698. Caggianelli, A., and G. Prosser (2002), Modelling the thermal perturbation of the continental crust after intraplating of thick granitoid sheets: A comparison with the crustal sections in Calabria (Italy), Geol. Mag., 139, 699–706. Cande, S. C., and D. V. Kent (1995), Revised calibration of the geomagnetic polarity time scale for the Late Cretaceous and Cenozoic, J. Geophys. Res., 100, 6093–6095. Caratori Tontini, F., P. Stefanelli, I. Giori, O. Faggioni, and C. Carmisciano (2004), The revised aeromagnetic map of Italy, Ann. Geophys., 47, 1547–1556. Cavazza, W. (1989), Detritial modes and provenance of the Stilo‐capo d’Orlando Formation (Miocene), southern Italy, Sedimentology, 36, 1077–1090. Cavazza, W., and P. G. DeCelles (1993), Upper Messinian siliciclastic rocks in southeastern Calabria (southern Italy): Palaeotectonic and eustatic implications for the evolution of the central Mediterranean region, Tectonophysics, 298, 223–241. Cavazza, W., J. Blenkinsop, P. G. De Celles, R. Timothy Patterson, and E. G. Reinhardt (1997), Stratigrafia e sedimentologia della sequenza sedimentaria oligocenico‐quaternaria del bacino calabro‐ionico, Boll. Soc. Geol. Ital., 116, 51–77. Chiappini, M., A.Meloni, E. Boschi, O. Faggioni, N. Beverini, C. Carmisciano, and I. Marson (2000), Shaded relief magnetic anomaly map of Italy and surrounding marine areas, Ann. Geophys., 43, 983–989. Chiappini, M., F. Ferraccioli, E. Bozzo, and D. Damaske (2002), Regional compilation and analysis of aeromagnetic anomalies for the Transantarctic Mountains‐Ross Sea sector of the Antarctic, Tectonophysics, 347, 121–137. Chiarabba, C., P. De Gori, and F. Speranza (2008), The Southern Tyrrhenian Subduction Zone: Deep geometry, magmatism and Plio‐Pleistocene evolution, Earth Planet. Sci. Lett., 268, 408–423. Cifelli, F., M. Mattei, and F. Rossetti (2007a), Tectonic evolution of arcuate mountain belts on top of a retreating subduction slab: The example of the Calabria Arc, J. Geophys. Res., 112, B09101, doi:10.1029/ 2006JB004848. Cifelli, F., M. Mattei, and F. Rossetti (2007b), The architecture of brittle postorogenic extension: Results from an integrated structural and paleomagnetic study in north Calabria (southern Italy), Geol. Soc. Am. Bull. 119(1), 221–239. Colonna, V., S. Lorenzoni, and E. Zanettin Lorenzoni (1973), Sull’esistenza di due complessi metamorfici lungo il bordo sud‐orientale del massiccio “granitico” delle Serre (Calabria), Boll. Soc. Geol. Ital., 92, 801–830. Cornette, Y., P. Y. Gillot, P. Barrier, and F. Jehenne (1987), Données radiométriques preliminaries (Potassium‐Argon) sur des cinérites pliopléistocènes du Détroit de Messine, Doc. Trav. Inst. Geol. Albert‐de‐ Lapparent, 11, 97–99. Cucci, L., and A. Tertulliani (2006), I terrazzi marini nell’area di Capo Vaticano (arco calabro): Solo un record di sollevamento regionale o anche di deformazione cosismica?, Quaternario, 19, 89–101. De Astis, G., G. Ventura, and G. Vilardo (2003), Geodynamic significance of the Aeolian volcanism (Southern Tyrrhenian Sea, Italy) in light of structural, seismological and geochemical data, Tectonics, 22(4), 1040, doi:10.1029/2003TC001506. Del Ben, A., C. Barnaba, and A. Taboga (2008), Strike‐slip systems as the main tectonic features in the Plio‐Quaternary kinematics of the Calabrian Arc, Mar. Geophys. Res., 29, 1–12. De Ritis, R., I. Blanco‐Montenegro, G. Ventura, and M. Chiappini (2005), Aeromagnetic data provide new insights on the volcanism and tectonics of Vulcano Island and offshore areas (southern Tyrrhenian Sea, Italy), Geophys. Res. Lett., 32, L15305, doi:10.1029/2005GL023465. De Ritis, R., G. Ventura, and M. Chiappini (2007), Aeromagnetic anomalies reveal hidden tectonic and volcanic structures in the central sector of the Aeolian Islands, southern Tyrrhenian Sea, Italy, J. Geophys. Res., 112, B10105, doi:10.1029/2006JB004639. De Rosa, R., R. Dominici, and M. Sonnino (2001), Evidenze di vulcanismo sinsedimentario nella successione pleistocenica del graben del Mèsima (Calabria centro‐occidentale), Quaternario, 14(2), 81–91. De Rosa, R., R. Dominici, P. Donato, and D. Barca (2008), Widespread syn‐eruptive volcaniclastic deposits in the Pleistocenic basins of South‐Western Calabria, J. Volcanol. Geotherm. Res., 177, 155–169.Doglioni, C., F. Innocenti, and S. Mariotti (2001), Why Mt. Etna?, Terra Nova, 13, 25–31. Dumas, B., P. Guérémy, R. Lhénaff, and J. Raffy (1982), Le soulèvement Quaternaire de la Calabre meridionale, Rev. Gèol. Dyn. Géogr. Phys., 23, 27–40. Ellis, M., and G. King (1991), Structural control of flank volcanism in continental rift, Science, 254, 839–843. Faccenna, C., T. W. Becker, F. P. Lucente, L. Jolivet, and F. Rossetti (2001), History of subduction and back‐arc extension in the Central Mediterranean, Geophys. J. Int., 145, 809–820. Finetti, I. (2005), Deep Seismic Exploration of the Central Mediterranean and Italy, 794 pp., Elsevier, Amsterdam. Finn, C., T. W. Sisson, and M. Deszcz‐Pan (2001), Aerogeophysical measurements of collapse‐prone hydrothermally altered zones at Mount Rainer volcano, Nature, 409, 600–603. Ghisetti, F. (1981), L’evoluzione strutturale del bacino plio‐pleistocenico di Reggio Calabria nel quadro geodinamico dell’Arco Calabro, Boll. Soc. Geol. Ital., 100, 433–466. Ghisetti, F., and L. Vezzani (1980), Contribution of structural analysis to understanding the geodynamic evolution of the Calabrian arc (Southern Italy), J. Struct. Geol., 3, 371–381. Gradstein, F. M., J. G. Ogg, and A. G. Smith (2005), A Geologic Time Scale, 610 pp., Cambridge Univ. Press, Cambridge. Graessner, T., and V. Schenk (2001), An exposed Hercynian deep continental crustal section in the Sila massif of northern Calabria: Mineral chemistry, petrology and a P–T path of granulite facies metapelitic migmatites and metabasites, J. Petrol., 42, 931–961. Guarnieri, P. (2006), Plio‐Quaternary segmentation of the south Tyrrhenian forearc basin, Int. J. Earth Sci., 95, 107–118. Gvirtzman, Z., and A. Nur (2001), Residual topography, lithospheric structure and sunken slabs in the Central Mediterranean, Earth Planet. Sci. Lett., 187, 117–130. IAGA (International Association of Geomagnetism and Aeronomy) (2005), The 10th‐Generation International Geomagnetic Reference Field, Geophys. J. Int., 161, 561–565. Jolivet, L., and C. Faccenna (2000), Mediterranean extension and the Africa‐Eurasia collision, Tectonics, 19, 1095–1106. Knott, S. D., and E. Turco (1991), Late Cenozoic kinematics of the Calabrian Arc, southern Italy, Tectonics, 10, 1164–1172. Langone, A., E. Gueguen, G. Prosser, A. Caggianelli, and A. Rottura (2006), The Curinga‐Girifalco fault zone (northern Serre, Calabria) and its significance within the Alpine tectonic evolution of the western Mediterranean, J. Geodyn., 42, 140–158 Lenat, J. F., B. Gibert‐Malengreau, and A. Galdeano (2001), A new structural model for the evolution of the volcanic island of Reunion (Indian Ocean), J. Geophys. Res., 106(B5), 8645–8663. Malinverno, A., and W. B. F. Ryan (1986), Extension in Tyrrhenian Sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere, Tectonics, 5, 227–254. Mattei, M., F. Speranza, A. Argentieri, F. Rossetti, L. Sagnotti, and R. Funiciello (1999), Extensional tectonics in the Amantea basin (Calabria, Italy): A comparison between structural and magnetic anisotropy data, Tectonophysics, 307, 33–49. Mattei, M., P. Cipollari, D. Cosentino, A. Argentieri, F. Rossetti, and F. Speranza (2002), The Miocene tectonic evolution of the Southern Tyrrhenian Sea: Stratigraphy, structural and paleomagnetic data from the on‐shore Amantea basin (Calabrian Arc, Italy), Basin Res., 14, 147–168. Milia, A., E. Turco, P. P. Pierantoni, and A. Schettino (2009), Fourdimensional tectono‐stratigraphic evolution of the Southeastern peri‐ Tyrrhenian basins (Margin of Calabria, Italy), Tectonophysics, 476, 41–56, doi:10.1016/j.tecto.2009.02.030 Miyauchi, T., G. Dal Pra, and S. S. Labini (1994), Geochronology of Pleistocene marine terraces and regional tectonics in the Tyrrhenian coast of South Calabria, Italy, Quaternario, 7, 17–34. Monaco, C., and L. Tortorici (2000), Active faulting in the Calabrian Arc and eastern Sicily, J. Geodyn., 29, 407–424. Mulargia, F., P. Baldi, V. Achilli, and F. Broccio (1984), Recent crustal deformations and tectonics of the Messina Strait area, Geophys. J. R. Astron. Soc., 76, 369–381. Neri, G., B. Orecchio, C. Totaro, G. Falcone, and D. Presti (2009), Subduction beneath southern Italy close the ending: Results from seismic tomography, Seism. Res. Lett., 80, 63–70. Nicolosi, I., F. Speranza, and M. Chiappini (2006), Ultrafast oceanic spreading of the Marsili Basin, southern Tyrrhenian Sea: Evidence from magnetic anomaly analysis, Geology, 34, 717–720. Pascal, C., and S. A. P. L. Cloetingh (2002), Rifting in heterogeneous lithosphere: Inferences from numerical modeling of the northern North Sea and the Oslo Graben, Tectonics, 21(6), 1060, doi:10.1029/2001TC901044. Patterson, R. T., J. Blenkinsop, and W. Cavazza (1995), Planktic foraminiferal biostratigraphy and 87Sr/86Sr isotopic stratigraphy of the Oligocene‐to‐ Pleistocene sedimentary sequence in the south‐eastern calabria microplate, southern Italy, J. Paleontol., 69, 7–20. Press, W., S. Teulosky, W. Vetterling, and B. Flannery (1992), Numerical Recipes in C: The Art of Scientific Computing, 965 pp., Cambridge Univ. Press, Cambridge. Rasmussen, R., and L. B. Pedersen (1979), End corrections in potential field modelling. Geophys. Prospect., 27, 749–760. Roda, C. (1965), Il calcare portlandiano a Dasycladacee di M. Mutolo, Reggio Calabria, Geol. Rom., 4, 259–290. Rollin, P. J., J. Cassidy, C. A. Locke, and H. Rymer (2000), Evolution of the magmatic plumbing system at Mt Etna: New evidence from gravity and magnetic data, Terra Nova, 12, 193–198. Rosenbaum, G., M. Gasparon, F. P. Lucente, A. Peccerillo, and M. S. Miller (2008), Kinematics of slab tear faults during subduction segmentation and implications for Italian magmatism, Tectonics, 27, TC2008, doi:10.1029/2007TC002143. Sagnotti, L., F. Speranza, A. Winkler, M. Mattei, and R. Funicello (1998), Magnetic clay of clay sediments from the external northern Apennines (Italy), Phys. Earth Planet. Int., 105, 73–93. Schenk, V. (1984), Petrology of felsic granulites, metapelites, metabasic, ultramafic, and metacarbonates from southern Calabria (Italy): Prograde metamorphism, uplift and cooling of former lower crust, J. Petrol., 25, 225–298. Schenk, V. (1990), The exposed crustal cross section of southern Calabria, Italy: Structure and evolution of a segment of Hercynian crust, in Exposed Cross‐Section of Continental Crust, edited by M. H. Salisbury and D. M. Fountain, pp. 21–42, Kluwer, Dordrecht. Sharma, P. V. (1986), Geophysical Methods in Geology, 442 pp., Elsevier, New York. Silva, J. B. C. (1986), Reduction to the pole as an inverse problem and its application to low‐latitude anomalies, Geophysics, 51, 369–382. Spakman, W., S. van der Lee, and R. van der Hilst (1993), Travel‐time tomography of the European‐Mediterranean mantle down to 1400 km, Phys. Earth Planet. Int., 79, 3–74. Talwani, M., and J. R. Heirtzler (1964), Computation of magnetic anomalies caused by two‐dimensional bodies of arbitrary shape, in Computers in the Mineral Industries (Part 1), vol. 9, edited by G. A. Parks, pp. 464– 480, Stanford Univ. Publ. Geological Sciences, Stanford, Cal. Tansi, C., F. Muto, S. Critelli, and G. Iovine (2007), Neogene‐Quaternary strike‐slip tectonics in the central Calabrian Arc (southern Italy), J. Geodyn., 43, 393–414. Tortorici, L., C. Monaco, C. Tansi, and O. Cocina (1995), Recent and active tectonics in the Calabrian arc (southern Italy), Tectonophysics, 243, 37–55. Tortorici, G., M. Bianca, G. de Guidi, C. Monaco, and L. Tortorici (2003), Fault activity and marine terracing in the Capo Vaticano area (southern Calabria) during the Middle‐Late Quaternary, Quat. Int., 101, 269–278. Trincardi, F., M. Cipolli, P. Ferretti, J. La Morgia, M. Ligi, G. Marozzi, V. Palumbo, M. Taviani, and N. Zitellini (1987), Slope basin evolution on the Eastern Tyrrhenian margin: Preliminary report, G. Geol., 49, 1–9. Van Dijk, J. P. (1994), Late Neogene kinematics of intra‐arc oblique shear zones: The Petilia–Rizzuto Fault Zone (Calabrian Arc, central Mediterranean), Tectonics 13, 1201–1230. Van Dijk, J. P., and M. Okkes (1991), Neogene tectonostratigraphy and kinematics of Calabrian basin: Implications for the geodynamics of the central Mediterranean, Tectonophysics, 196, 23–60. Westaway, R. (1993), Quaternary uplift of southern Italy, J. Geophys. Res., 98, 21741–21772. Won, I. J., and M. Bevis (1987), Computing the gravitational and magnetic anomalies due to a polygon: Algorithms and Fortran subroutines, Geophysics 52, 232–238. Zanella, E. (1995), Studio delle variazioni paleosecolari del campo magnetico terrestre registrate nelle vulcaniti Quaternarie dell’area tirrenica e del canale di Sicilia, PhD Thesis, 198 pp., Università di Torino, Italy.en
dc.description.obiettivoSpecifico3.2. Tettonica attivaen
dc.description.obiettivoSpecifico3.4. Geomagnetismoen
dc.description.obiettivoSpecifico5.7. Consulenze in favore di istituzioni nazionali e attività nell'ambito di trattati internazionalien
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.contributor.authorDe Ritis, R.en
dc.contributor.authorDominici, R.en
dc.contributor.authorVentura, G.en
dc.contributor.authorNicolosi, I.en
dc.contributor.authorChiappini, M.en
dc.contributor.authorSperanza, F.en
dc.contributor.authorDe Rosa, R.en
dc.contributor.authorDonato, P.en
dc.contributor.authorSonnino, M.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentDepartment of Earth Science, Università della Calabria, Arcavacata di Rende, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentDepartment of Earth Science, Università della Calabria, Arcavacata di Rende, Italyen
dc.contributor.departmentDepartment of Earth Science, Università della Calabria, Arcavacata di Rende, Italyen
dc.contributor.departmentDepartment of Earth Science, Università della Calabria, Arcavacata di Rende, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.orcid0000-0003-1771-0132-
crisitem.author.orcid0000-0001-9388-9985-
crisitem.author.orcid0000-0002-0711-9923-
crisitem.author.orcid0000-0001-7433-9435-
crisitem.author.orcid0000-0001-5492-8670-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Article.pdf9.24 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 10

17
checked on Feb 10, 2021

Page view(s) 5

564
checked on Apr 17, 2024

Download(s)

51
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric