Please use this identifier to cite or link to this item:
Authors: Falsaperla, S.* 
Cara, F.* 
Rovelli, A.* 
Neri, M.* 
Behncke, B.* 
Acocella, V.*
Title: Effects of the 1989 fracture system in the dynamics of the upper SE flank of Etna revealed by volcanic tremor data: The missing link?
Issue Date: 9-Nov-2010
Series/Report no.: /115(2010)
DOI: 10.1029/2010JB007529
Keywords: Mount Etna
fracture system
volcanic tremor
Subject Classification04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology 
Abstract: Fracture reactivation is a widespread process in nature even though evidence of magma-induced reactivation is less documented. Here we provide evidence of the reactivation of a fracture system on the upper flank of the Mt. Etna volcano and consider its possible implications in understanding the recent volcanic and tectonic activity. A NNW–SSE trending fracture, partly accompanied by magma emplacement in the form of a laterally propagating dike, formed in 1989 on the upper SE flank of Etna. Lava effusions in 1991–1993, 2001, and 2006 were associated with volcano-tectonic (VT) seismicity and ground deformations on the upper part of the volcano, which document the seismogenetic involvement of the 1989 fractures, although without eruptive phenomena along the discontinuity. In addition to the aforementioned episodes of VT seismicity, differences in the characteristics of the background seismic radiation (volcanic tremor) were measured at stations close to these fractures during the eruptive activity on 24 November 2006, for which more detailed volcanological and seismological time histories are available. Moving on from these findings, we analyze volcanic tremor data recorded close to the summit and along the S flank of the volcano to highlight the interactions between seismic radiation and the 1989 fracture system. Centroid location of volcanic tremor and wave field characteristics at stations of the permanent local seismic network of Etna highlight the guidance role played by the 1989 fractures during the eruptive activity on 24 November 2006. In addition, the collected data shed light on hitherto unknown structural features, which appear to connect the volcano summit to the lower SE slope and also play an important role in controlling the instability of the E flank. More generally, this study shows how (1) using an integrated approach, it is possible to link apparently different features to a common structure, showing uniform and distinct dynamics relevant at the volcano scale, and (2) fracture reactivation can also occur by means of magma intrusion, playing an important role in the transfer of magma within a volcanic edifice.
Description: An edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union.
Appears in Collections:Papers Published / Papers in press

Files in This Item:
File Description SizeFormat 
Falsaperla et al. published.pdfArticle16 MBAdobe PDFView/Open
Show full item record

Page view(s) 50

Last Week
Last month
checked on May 27, 2019


checked on May 27, 2019

Google ScholarTM