Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6214
DC FieldValueLanguage
dc.contributor.authorallZirizzotti, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallCafarella, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallBaskaradas, J. A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallTabacco, I. E.; Univ. di Milano - Sezione Geofisica, Milan, Italyen
dc.contributor.authorallUrbini, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallMangialetti, M.; Univ. di Milano - Sezione Geofisica, Milan, Italyen
dc.contributor.authorallBianchi, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.date.accessioned2010-11-11T06:57:10Zen
dc.date.available2010-11-11T06:57:10Zen
dc.date.issued2010-04en
dc.identifier.urihttp://hdl.handle.net/2122/6214en
dc.description.abstractIn this paper a method to distinguish a wet or dry bedrock-ice interface is proposed. It is based on the analysis of Radio Echo Sounding (RES) measurements, a widely employed method for determining bedrock topography in Antarctica. In particular, the RES system has played an important role in subglacial lake exploration and hydrogeological studies at the bedrock-ice interface. Recently, bedrock characterization has been improved through the analysis of the power of radar echoes. Signal power depends on bedrock reflectivity and its specific physical condition. In this paper a linear model describing the loss term (internal ice absorption) is proposed. This model, together with other known quantities, contributes towards an assessment of power variation of bedrock reflectivity in order to determinate wet and dry bedrock interfaces in the Dome C region in Antarctica.en
dc.language.isoEnglishen
dc.publisher.nameIEEE Geoscience and Remote Sensing Societyen
dc.relation.ispartofIEEE Transactions on Geoscience and Remote Sensingen
dc.relation.ispartofseries5/48 (2010)en
dc.subjectRES systemsen
dc.subjectice absorptionen
dc.subjectbedrock reflectivityen
dc.subjectinternal ice layersen
dc.titleDry-wet bedrock interface detection by radio echo sounding measurementsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber2343 - 2348en
dc.subject.INGV02. Cryosphere::02.02. Glaciers::02.02.10. Instruments and techniquesen
dc.identifier.doi10.1109/TGRS.2009.2038900en
dc.relation.references1. R. Bell, M. Studinger, C.A. Shumman, M.A. Fahnestock and I. Joughin, “Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streams”, Nature, vol. 445, pp. 904-907, 2007. 2. V.V. Bogorodsky, C.R. Bentley and P.E. Gudmandsen, “Radioglaciology”, Reidel Publishing Company, pp. , 1985. 3. S.P. Carter, D.D. Blankenship, M.E. Peters, D.A. Young, J.W. Holt and D.L. Morse, “Radar-based subglacial lake classification in Antarctica”, Geochem. Geophys. Geosyst., Vol. 8, doi: 10.1029/ 2006GC001408, 2007. 4. H. Corr, J.C. Moore, K.W. Nicholls, “Radar absorption due to impurities in Antarctic ice”, Geophys. Res. Lett., vol. 20, num.11, pp. 1071-1074, 1993. 5. EPICA community members, “Eight glacial cycles from an Antarctic ice core”, Nature, vol. 429, pp. 623-628, 2004. 6. O. Eisen, F. Wilhelms, D. Seinhage, J. Schander, ”Instruments and Methods Improved method to determine radio-echo sounding reflector depths from ice-core profiles of permittivity and conductivity”, J. Glac., vol. 52, no. 177, pp. , 2006. 7. A. Forieri, I.E. Tabacco, A. Della Vedova, A. Zirizzotti, P. De Michelis, A. Passerini, "A new bedrock map of the Dome C area”, Terra Antartica Reports, ISSN 1723-7211, vol. 8, pp. 169-174, 2003. 8. S. Fujita, T. Matsuoka, T. Ishida, K. Matsuoka, S. Mae, “A summary of the complex dielectric permittivity of ice in the megahertz range and its applications for radar sounding of polar ice sheets”, Physics of Ice Core Records, pp. 185-212, Hokkaido University Press: Sapporo, 2000. 9. J.A. MacGregor, D.P. Winebrenner, H. Conway, K. Matsuoka, P.A. Mayewski and G.D. Clow, “Modeling englacial radar attenuation at Simple Dome, West Antarctica, using ice chemistry and temperature data”, J. Geophys. Res., vol. 112, F03008, doi:10.1029/2006JF000717, 2007. 10. R. Mulvaney and E. W. Wolff, “Spatial variability of the major chemistry of the Antarctic ice sheet”, Ann. Glaciol., vol. 20, pp. 440-447, 1994. 11. J.D. Paden, C.T. Allen, S. Gogineni, K.C. Jezek, D. Dahl-Jensen, L.B. Larsen, “Wideband measurements of ice sheet attenuation and basal scattering“, Geoscience and Remote Sensing Letters IEEE vol. 2, num. 2, pp. 164 – 168, 2005. 12. G.K.A. Oswald and S.P. Gogineni, “Recobery of subglacial water extent from Greenland radar survey data”, J. Galcyol., vol. 54, num. 184, pp. 94- 106, 2008. 13. M.E. Peters, D.D. Blankenship and D.L. Morse,“Analysis techniques for coherent airborne radar sounding: Application to West Antarctic ice streams”, J. Geophys. Res., vol. 110, B06303, doi: 10.1029/2004JB003222, 2005. 14. L.A. Plewes and B. Hubbard, “A review of the use of radio-echo sounding in glaciology” Progress in Physical Geography, vol. 25, num. 2, pp. 203-236, 2001. 15. A.P. Kapitsa, J.K. Ridley, G.D. Robin, M.J. Siegert and I.A. Zotikov, “A large deep freshwater lake beneath the ice of central East Antarctica” Nature, vol. 381, pp. 684-686, 2006. 16. B. Kulessa, “A Critical Review of the Low-frequency Electrical Properties of Ice Sheets and Glaciers”, Journal of Environmental & Engineering Geophysics, vol. 12; pp. 23-36; DOI: 10.2113/JEEG12.1.23, 2007. 17. M. Skolnik, (Ed): „Radar Handbook‟ (McGraw-Hill,1990, 2nd edn) Ch.1, 1990. 18. B. Stauffer, J. Fluckiger, E.W. Wolff and P.R.F. Barnes, “The EPICA deep ice cores: first results and perspectives”, Annals of Glaciology, vol. 39, pp. 93-100, 2004. 19. I.E. Tabacco, P. Cianfarra, A. Forieri, F. Salvini and A. Zirizotti, “Physiography and tectonic setting of the subglacial lake district between Vostok and Belgica subglacial highlands (Antarctica)”, Geophys. J. Int., vol. 165, pp. 1029–1040, 2006. 20. F.T. Ulaby, R.K. Moore, A.K. Fung “Microwave remote sensing fundamentals and radiometry” Addison-Wesley Pub. Co, 1981. 21. D. Wingham, J. Siegert, A. Shepherd and A.S. Muir, “Rapid discharge connects Antarctic subglacial lakes”, Nature, vol. 440, pp. 1033-1036, 2006. 22. E. Wolff et al., “EPICA Dome C Core EDC99 Dielectric Profiling Data. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution” Series # 2004-037, NOAA/NGDC, Paleoclimatology Program, Boulder CO, USA, 2004.en
dc.description.obiettivoSpecifico3.8. Geofisica per l'ambienteen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.contributor.authorZirizzotti, A.en
dc.contributor.authorCafarella, L.en
dc.contributor.authorBaskaradas, J. A.en
dc.contributor.authorTabacco, I. E.en
dc.contributor.authorUrbini, S.en
dc.contributor.authorMangialetti, M.en
dc.contributor.authorBianchi, C.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentUniv. di Milano - Sezione Geofisica, Milan, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentUniv. di Milano - Sezione Geofisica, Milan, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptSAP, School of Electrical and Electronics Engineering-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptUniv. di Milano - Sezione Geofisica, Milan, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.orcid0000-0001-7586-9219-
crisitem.author.orcid0000-0003-2005-8923-
crisitem.author.orcid0000-0002-8053-4197-
crisitem.author.orcid0000-0002-0217-5379-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent02. Cryosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Article.pdf533.73 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

9
checked on Feb 10, 2021

Page view(s) 1

14,753
checked on Apr 24, 2024

Download(s) 50

81
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric