Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/620
DC FieldValueLanguage
dc.contributor.authorallVentura, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2006-01-23T09:00:44Zen
dc.date.available2006-01-23T09:00:44Zen
dc.date.issued2004en
dc.identifier.urihttp://hdl.handle.net/2122/620en
dc.description.abstractA circular dome from Lipari Island consists of latitic enclaves hosted in a rhyolitic magma. A strain analysis of the enclaves has been carried out and the pure shear (a) and simple shear (g) deformation, the vorticity number Wk and flow kinematics are determined. The axial ratio Rf of the enclaves and the angle f between the long axis of the enclaves and the transport direction are measured in 131 sites concentrated in the axial zone (z1), upper-distal zone (z2) and basal zone (z3) of the flow. The f values depict a pattern suggesting endogenous growth. In z1, a/g > 1. In z2, 1 < a < 1.35 and 1.8 < g < 0.5. In z3, 1 < a < 1.5 and 0.3 < g < 2.8. In z1, Wk < 0.5. In z2 and z3, Wk > 0.8. Lateral stretching due to the upward motion of magma from the conduit prevails in z1. Here the increase of pure shear strain from the bottom to the top reflects strain accumulation due to endogenous growth. z2 and z3 suffer simple shear deformation. In z3, the sense of shear is consistent with the transport direction. An opposite sense of shear characterizes z2. This is due to velocity gradients located in the lower and upper portions of the flow. The kinematics is viscous spreading in z1 and viscous gliding (hyperbolic flow) in z2â z3.Possible rupturing of the exterior may be important in z1, where lateral stretching occurs, and in z3, where g is at a maximum. The effusion rate is 1.93 m3/s. Strain rates calculated using structural data span a range from 1.9 to 5.8.10 6 s 1.en
dc.format.extent419 bytesen
dc.format.extent529103 bytesen
dc.format.mimetypetext/htmlen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofJournal Geiphysical Researchen
dc.relation.ispartofseries109en
dc.subjectlava domesen
dc.subjectkinematicsen
dc.subjectemplacement mechanismen
dc.subjectstrain analysisen
dc.subjectenclavesen
dc.subjectviscous flowsen
dc.titleThe strain path and kinematics of lava domes: An example from Liparien
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1-10en
dc.identifier.URLwww.agu.org/journals/jb/en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.09. Structural geologyen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.03. Magmasen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocksen
dc.identifier.doi10.1029/2003JB002740en
dc.relation.referencesAnderson, S. W., and J. H. Fink (1992), Crease structures as indicators of lava flow emplacement rates and stress states, Geol. Soc. Am. Bull., 104, 615– 626. Beam, E. C., and D. M. Fisher (1999), An estimate of kinematic vorticity from rotated elongate porphyroblasts, J. Struct. Geol., 21, 1553–1559. Bindeman, I. N., and J. C. Bailey (1994), A model of reverse differentiation at Dikii Greben’ Volcano, Kamchatka: Progressive basic magma vesiculation in a silicic magma chamber, Contrib. Mineral. Petrol., 117, 263–278. Blake, S. (1990), Viscoplastic models of lava domes, in Lava Flows and Domes, IAVCEI Proc. in Volcanol., vol. 2, edited by J. H. Fink, pp. 88– 126, Springer-Verlag, New York. Blake, S., and J. H. Fink (2000), On the deformation and freezing of enclaves during magma mixing, J. Volcanol. Geotherm. Res., 95, 1–8. Brun, J. P., and O. Merle (1985), Strain pattern in models of spreadinggliding nappes, Tectonics, 4, 705–719. Buisson, C., and O. Merle (2002), Experiments on internal strani in lava dome cross-sections, Bull. of Volcanol., 64, 363– 371. Canon-Tapia, E., G. P. L. Walker, and E. Herrero-Bervera (1996), The internal structure of lava flows-insights from AMS measurements I: Near vent a’a, J. Volcanol. Geotherm. Res., 70, 21–36. Castro, J. M., M. Manga, and K. V. Cashman (2002), Dynamics of obsidian flows inferred from microstructures: Insights from microlite preferred orientations, Earth Planet. Sci. Lett., 199, 211 – 226. Cole, P. D., E. S. Calder, T. H. Druitt, R. Hoblitt, R. Robertson, R. S. J. Sparks, and S. R. Young (1998), Pyroclastic flows generated by gravitational instability of the 1996– 1997 lava dome of Soufriere Hills Volcano, Montserrat, Geophys. Res. Lett., 25, 3425– 3428. Cortese, M., G. Frazzetta, and L. La Volpe (1986), Volcanic history of Lipari (Aeolian Islands, Italy) during the last 10,000 years, J. Volcanol. Geotherm. Res., 27, 117–133. Coward, M. P. (1976), Strain within ductile shear zones, Tectonophysics, 34, 181–197. Cressie, N. (1991), Statistics for Spatial Data, 900 pp., John Wiley, Hoboken, N. J. Crisci, G. M., R. De Rosa, G. Lanzafame, R. Mazzuoli, M. F. Sheridan, and G. Zuffa (1981), Monte Guardia sequence: A late Pleistocene eruptive cycle on Lipari, Italy, Bull. Volcanol., 44, 241–255. Crisci, G. M., R. De Rosa, S. Esperanca, R. Mazzuoli, and M. Sonnino (1991), Temporal evolution of a three component system: The Island of Lipari (Aeolian Arc, southern Italy), Bull. Volcanol., 53, 207–221. De Rosa, R., R. Mazzuoli, and G. Ventura (1996), Relationships between deformation and mixing processes in lava flows: A case study from Salina (Aeolian Islands, Tyrrhenian Sea), Bull. Volcanol., 58, 286–297. De Rosa, R., H. Guillou, R. Mazzuoli, and G. Ventura (2003a), New unspiked K-Ar ages of volcanic rocks of the central and western sector of the Aeolian Islands: Reconstruction of the volcanic stages, J. Volcanol. Geotherm. Res., 120, 161– 178. De Rosa, R., P. Donato, A. Gioncada, M. Masetti, and R. Santacroce (2003b), The Monte Guardia eruption (Lipari, Aeolian Islands): An example of a reversely zoned magma mixing sequenze, Bull. Volcanol., 65, 530–543. Fink, J. H. (1980), Surface folding and viscosity of rhyolite flows, Geology, 8, 250–254. Fink, J. H. (1993), The emplacement of silicic lava flows and associated hazards, in Active Lavas, edited by C. R. J. Kilburn and G. Luongo, pp. 5– 24, Univ. of London Press, London. Fink, J. H., and R. W. Griffiths (1998), Morphology, eruption rates, and rheology of lava domes: Insights from laboratory models, J. Geophys. Res., 103, 527–545. Gioncada, A., R. Mazzuoli, M. Bisson, and M. T. Pareschi (2003), Petrology of volcanic products younger than 42 ka on the LiparivVulcano complex (Aeolian Islands, Italy): An example of volcanism controlled by tectonics, J. Volcanol. Geotherm. Res., 122, 191– 220. Goto, Y., and J. Macphie (1998), Endogenous growth of a Miocene submarine dacite cryptodome, Rebun Island, Hokkaido, Japan, J. Volcanol. Geotherm. Res., 84, 273– 386. Griffiths, R. W., and J. H. Fink (1993), Effects of surface cooling on the spreading of lava flows and domes, J. Fluid. Mech., 252, 667– 702. Griffiths, R. W., and J. H. Fink (1997), Solidifying Bingham extrusions: A model for the growth of silicic lava domes, J. Fluid. Mech., 347, 13– 36. Hanmer, S. (1990), Natural rotated inclusions in non-ideal shear, Tectonophysics, 176, 245– 255. Harkovska, A. (1993), The structure of Mesta volcanic massif. Part I. Structural features of the volcanics in Mesta graben, Geol. Balc., 23, 35– 58. Huppert, H. E., J. B. Sheperd, H. Sigurdsson, and R. S. J. Sparks (1982), On lava dome growth, with application to the 1979 lava extrusion of the Soufriere of St Vincent, J. Volcanol. Geotherm. Res., 14, 199– 222. Iezzi, G., and G. Ventura (2000), Kinematics of lava flows based on folds analysis, Geoph. Res. Lett., 278, 1227– 1231. Jiang, D. (1999), Vorticity decomposition and its application to sectional flow characterization, Tectonophysics, 301, 243– 259. Lejeune, A. M. (1995), Evolution of lava domes, experiments using gum rosin, a new analogue for magmas, Eos Suppl., 680, 46–76. Lisle, R. J. (1985), Geological Strain Analysis: A Manual for the Rf /f Technique, 125 pp., Pergamon Press, New York. Manga, M. (1996), Mixing of heterogeneities in the mantle: Effect of viscosity differences, Geophys. Res. Lett., 23, 403– 406. Manley, C. R. (1996), Physical volcanology of a voluminous rhyolite lava flow, the Badlands lava, Owyhee plateau, southwestern Idaho, J. Volcanol. Geotherm. Res., 71, 129–153. Matthews, P. E., R. A. B. Bond, and J. J. Van Den Berg (1974), An algebraic method of strain analysis using elliptical markers, Tectonophysics, 24, 31– 67. Melnik, O. E., and R. S. J. Sparks (1999), Non-linear dynamics of lava dome extrusion, Nature, 402, 37–41. Merle, O. (1986), Patterns of stretch trajectories and strain rates within spreading-gliding nappes, Tectonophysics, 124, 211 –222. Merle, O. (1998), Internal strain within lava flows from analogue modelling, J. Volcanol. Geotherm. Res., 81, 189– 206. Merle, O. (2000), Numerical modelling of strain in lava tubes, Bull. Volcanol., 62, 53– 58. Mukul, M., and G. Mitra (1998), Finite strain and strain variation analysis in the Sheeprock Thrust Sheet, an internal thrust sheet in the Provo salient of the Sevier Fold-and-Thrust belt, Central Utah, J. Struct. Geol., 20, 385– 405. Nakada, S., and T. Fujii (1993), Preliminary report on the activity at Unzen Volcano Japan, November 1990 –November 1991, Dacite lava domes and pyroclastic flows, J. Volcanol. Geotherm. Res., 54, 319– 333. Perugini, D., G. Poli, and N. Prosperino (2002), Morphometric analysis of magmatic enclaves, a tool for understanding magma vesiculation and ascent, Lithos, 61, 225– 235. Ramsay, J. G., and M. I. Huber (1983), The Techniques of Modern Structural Geology, vol. 1, Strain Analysis, 307 pp., Academic, San Diego, Calif. Robertson, R. E. A., W. P. Aspinall, R. A. Herd, G. E. Norton, R. S. J. Sparks, and S. R. Young (2000), The 1995 – 1998 eruption of the Soufrie’re Hills volcano, Montserrat, WI, Philos. Trans. R. Soc. London, Ser. A, 358, 1619–1637. Rust, A. C., M. Manga, and K. V. Cashman (2003), Determining flow type, shear rate and shear stress in magmas from bubbles shapes and orientations, J. Volcanol. Geotherm. Res., 122, 111– 132. Sanderson, D. J. (1982), Models of strain variation in nappes and thrust sheets a review, Tectonophysics, 88, 201– 233. Schultz-Ela, D. D. (2001), Excursus on gravity gliding and gravity spreading, J. Struct. Geol., 23, 725–731. Seno, S., G. Dallagiovanna, and M. Vanissi (1998), From finite strain data to strain history, a model for a sector of the Ligurian Alps, Italy, J. Struct. Geol., 20, 573– 585. Smith, J. V. (1998), Interpretation of domainal groundmass textures in basalt lavas of the southern Lamington Volcanics, eastern Australia, J. Geophys. Res., 103, 27,383– 27,391. Smith, J. V., and E. Houston (1994), Folds produced by gravity spreading of a banded rhyolite lava flow, J. Volcanol. Geotherm. Res., 63, 89– 94. Smith, J. V., S. Yamauchi, and Y. Miyake (1993), Microshear zones in a Miocene submarine dacite dome of southwest Japan, Bull. Volcanol., 55, 438– 442. Tikoff, B., and H. Fossen (1993), Simultaneous pure and simple shear the unifying deformation matrix, Tectonophysics, 217, 267– 283. Tranne, C. A., N. Calanchi, F. Lucchi, and P. L. Rossi (2000), Geological sketch map of Lipari, Aeolian Islands, Italy, Dipartimento Scienze della Terra e Geologico-Ambientali, Univ. a’ di Bologna, Bologna, Italy. Ventura, G. (2001), The strain path and emplacement mechanism of lava flows, an example from Salina Southern Tyrrhenian Sea, Italy, Earth Planet. Sci. Lett., 188, 229– 240. Ventura, G., R. De Rosa, R. Mazzuoli, and E. Colletta (1996), Deformation patterns in high-viscous lava flows inferred from the preferred orientation and tiling of crystals: An example from Salina Aeolian Islands, Southern Tyrrhenian Sea-Italy, Bull. Volcanol., 57, 555–562. Voight, B., E. K. Constantine, S. Siswowidjoyo, and R. Torley (2000), Historical eruptions of Merapi Volcano, Central Java, Indonesia, 1768– 1998, J. Volcanol. Geotherm. Res, 100, 69– 138. Weijermars, R. (1998), Taylor-mill analogues of £ow and defor- mation in rocks, J. Struct. Geol., 20, 77– 92. Williams, Q., and O. T. Tobish (1994), Microgranitic enclave shapes and magmatic strain histories, Constraints from drop deformation theory, J. Geophys. Res., 99, 24,359– 24,368. Wooster, M. J., T. Kaneko, S. Nakada, and H. Shimizu (2000), Discrimination of lava dome activity styles using satellite-derived thermal structures, J. Volcanol. Geotherm. Res, 102, 97– 118.en
dc.description.fulltextpartially_openen
dc.contributor.authorVentura, G.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0001-9388-9985-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Article published / in press
Manuscripts
Files in This Item:
File Description SizeFormat Existing users please Login
Ventura.pdf516.7 kBAdobe PDF
agu.htmredirect - agu419 BHTMLView/Open
Show simple item record

WEB OF SCIENCETM
Citations 50

10
checked on Feb 10, 2021

Page view(s) 50

151
checked on Apr 20, 2024

Download(s)

71
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric