Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6196
DC FieldValueLanguage
dc.contributor.authorallEtiope, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallKlusman, R. W.; Dept. of Chemistry and Geochemistry, Colorado School of Mines, Golden, Co., 80401, United Statesen
dc.date.accessioned2010-11-08T07:17:47Zen
dc.date.available2010-11-08T07:17:47Zen
dc.date.issued2010en
dc.identifier.urihttp://hdl.handle.net/2122/6196en
dc.description.abstractDrylands are considered a net sink for atmospheric methane and a main item of the global inventories of the greenhouse gas budget. It is outlined here, however, that a significant portion of drylands occur over sedimentary basins hosting natural gas and oil reservoirs, where gas migration to the surface takes place, producing positive fluxes of methane into the atmosphere. New field surveys, in different hydrocarbonprone basins, confirm that microseepage, enhanced by faults and fractures in the rocks, overcomes the methanotrophic consumption occurring in dry soil throughout large areas, especially in the winter season. Fluxes of a few units to some tens of mg m−2 day−1 are frequent over oil–gas fields, whose global extent is estimated at 3.5–4.2 million km2; higher fluxes (>50 mg m−2 day−1) are primarily, but not exclusively, found in basins characterized by macro-seeps. Microseepage may however potentially exist over a wider area (∼8 million km2, i.e. 15% of global drylands), including the Total Petroleum Systems, coal measures and portions of sedimentary basins that have experienced thermogenesis. Based on a relatively large and geographically dispersed data-set (563 measurements) from different hydrocarbon-prone basins in USA and Europe, upscaling suggests that global microseepage emission exceeding 10 Tg year−1 is very likely. Microseepage is then only one component of a wider class of geological sources, including mud volcanoes, seeps, geothermal and marine seepage, which cannot be ignored in the atmospheric methane budget.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofGlobal and Planetary Changeen
dc.relation.ispartofseries/72 (2010)en
dc.subjectmicroseepageen
dc.subjectmethane fluxen
dc.subjectsoil sinken
dc.subjectdrylandsen
dc.subjectpetroleumen
dc.subjectgreenhouse gasen
dc.titleMicroseepage in drylands: Flux and implications in the global atmospheric source/sink budget of methaneen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber265-274en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistryen
dc.identifier.doi10.1016/j.gloplacha.2010.01.002en
dc.relation.referencesAbrams, M.A., 2005. Significance of hydrocarbon seepage relative to petroleum generation and entrapment. Mar. Pet. Geol. 22, 457–477. Baciu C., Caracausi C., Etiope G., Italiano F., 2007. Mud volcanoes and methane seeps in Romania: main features and gas flux. Annals of Geoph., 50, 501–512. Balakin, V.A., Gabrielants, G.A., Guliyev, I.S., Dadashev, F.G., Kolobashkin, V.M., Popov, A.I., Feyzullayev, A.A., 1981. Test of experimental study of hydrocarbon degassing of lithosphere of South Caspian basin and adjacent mountains systems, using laser gas-analyzer “Iskatel-2”. Dokl. Akad. Nauk SSSR 260 (1), 154–156. In Russian. Batjes, N.H., Bridges, E.M., 1994. Potential emissions of radiatively active gases from soil to atmosphere with special reference to methane: development of a global database (WISE). J. Geophys. Res. 99 (D8), 16,479–16,489. Bellizzia, G.A., Pimentel M.N., Bajo O.R., 1976. Mapa geologico estructural de Venezuela. Ministerio de Minas e Hidrocarburos, Direccion Geologico, Caracas, scala 1:500,000. Brown, A., 2000. Evaluation of possible gas microseepage mechanisms. Am. Assoc. Pet. Geol. Bull. 84, 1775–1789. Clarke, R.H., Cleverly, R.W., 1991. Petroleumseepage and post-accumulation migration. In: England, W.A., Fleet, A.J. (Eds.), Petroleum Migration. Geological Society Special Publication N. 59. Geological Society of London, Bath, pp. 265–271. Davidson, J.J. (Ed.), 1986. Unconventional Methods in Exploration for Petroleum and Natural Gas-IV. Southern Methodist University, Dallas, Texas. 350 pp. Dong, Y., Scharffe, D., Lobert, J.M., Crutzen, P.J., Sanhueza, E., 1998. Fluxes of CO2, CH4 and N2O from temperate forest soil: the effect of leaves and humus layers. Tellus 50B, 243–252. Dorr, H., Katruff, L., Levin, I., 1993. Soil texture parameterization of the methane uptake in aerated soils. Chemosphere 26, 697–713. Duchscherer, W., 1981. Nongasometric geochemical prospecting for hydrocarbons with case histories. Oil Gas J. 312–327 Oct. 19. Duchscherer, W., Mashburn, L., 1987. Application of the delta-C method of geochemical hydrocarbon prospecting. Assoc. Petrol. Geochem. Explor. Bull. 3, 15–39. Erlich, R.N., Barrett, S.F., 1992. Petroleum geology of the Eastern Venezuelan Foreland Basin. In: Macqueen, R.W., Leckie, D.A. (Eds.), Foreland Basins and Fold Belts: AAPG Memoir, vol. 55, pp. 341–362. Etiope, G., 1999. Subsoil CO2, and CH4 and their advective transfer from faulted grassland to the atmosphere. J. Geophys. Res. 104 (D14), 16,889. Etiope, G., 2004. GEM — Geologic Emissions of Methane, the missing source in the atmospheric methane budget. Atmos. Environ. 38, 3099–3100. Etiope, G., 2005. Mud volcanoes and microseepage: the forgotten geophysical components of atmospheric methane budget. Ann. Geophys. 48, 1–7. Etiope, G., Klusman, R.W., 2002. Geologic emissions of methane to the atmosphere. Chemosphere 49, 777–789. Etiope, G., Martinelli, G., 2002. Migration of carrier and trace gases in the geosphere: an overview. Phys. Earth Planet. Inter. 129 (3–4), 185–204. Etiope, G., Milkov, A.V., 2004. A new estimate of global methane flux from onshore and shallow submarine mud volcanoes to the atmosphere. Environ. Geol. 46, 997–1002. Etiope, G., Caracausi, A., Favara, R., Italiano, F., Baciu, C., 2002. Methane emission from the mudvolcanoes of Sicily (Italy). Geophys. Res. Lett. 29 (8). doi:10.1029/2001GL014340. Etiope, G., Baciu, C., Caracausi, A., Italiano, F., Cosma, C., 2004a. Gas flux to the atmosphere from mud volcanoes in eastern Romania. Terra Nova 16, 179–184. Etiope, G., Feyzullaiev, A., Baciu, C.L., Milkov, A.V., 2004b. Methane emission from mud volcanoes in eastern Azerbaijan. Geology 32 (6), 465–468. Etiope, G., Papatheodorou, G., Christodoulou, D., Ferentinos, G., Sokos, E., Favali, P., 2006. Methane and hydrogen sulfide seepage in the NWPeloponnesus petroliferous basin (Greece): origin and geohazard. Am. Assoc. Pet. Geol. Bull. 90 (5), 701–713. Etiope, G., Fridriksson, T., Italiano, F., Winiwarter, W., Theloke, J., 2007a. Natural emissions of methane from geothermal and volcanic sources in Europe. J. Volcanol. Geoth. Res., 165, 76–86. Etiope, G., Martinelli, G., Caracausi, A., Italiano, F., 2007b. Methane seeps and mud volcanoes in Italy: gas origin, fractionation and emission to the atmosphere. Geoph. Res. Lett., 34, L14303. doi: 10.1029/2007GL030341. Etiope, G., Lassey, K.R., Klusman, R.W., Boschi, E., 2008a. Reappraisal of the fossil methane budget and related emission from geologic sources. Geoph. Res. Lett., 35, L09307. doi: 10.1029/2008GL033623. Etiope, G., Milkov A.V., Derbyshire E., 2008b. Did geologic emissions of methane play any role in Quaternary climate change? Global Planet. Change, 61, 79–88. Hao, W.M., Scharffe, D., Crutzen, P.J., Sanhueza, E., 1988. Production of N2O, CH4 and CO2 from soils in the tropical savannah during the dry season. J. Atmos. Chem. 7, 93–105. Hernandez, P.A., Perez, N.M., Salazar, J.M., Nakai, S., Notsu, K., Wakita, H., 1998. Diffuse emission of carbon dioxide, methane and helium-3 from Teide volcano, Tenerife, Canary Islands. Geophys. Res. Lett. 25 (17), 3311–3314. Hunt, J.M., 1996. Petroleum Geochemistry and Geology. W.H. Freeman and Co., New York. 743 pp. Intergovernmental Panel on Climate Change, 2001. In: Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A. (Eds.), Climate Change 2001: The Scientific Basis. Cambridge Univ. Press, Cambridge, UK. 881 pp. Iseki, T., 2004. A portable remote methane detector using an InGaAsP DFB laser. Environ. Geol. 46 (8), 1064–1069. Jones, V.T., Drozd, R.J., 1983. Predictions of oil or gas potential by near-surface geochemistry. Am. Assoc. Pet. Geol. Bull. 67, 932–952. Klusman, R.W., 1993. Soil Gas and Related Methods for Natural Resource Exploration. J. Wiley & Sons, Chichester, U.K. 483 pp. Klusman, R.W., 2003a. Rate measurements and detection of gas microseepage to the atmosphere from an enhanced oil recovery/sequestration project, Rangely, Colorado, USA. Appl. Geochem. 18, 1825–1838. Klusman, R.W., 2003b. A geochemical perspective and assessment of leakage potential for a mature carbon dioxide-enhanced oil recovery project and as a prototype for carbon dioxide sequestration: Rangely field, Colorado. Am. Assoc. Pet. Geol. Bull. 87, 1485–1507. Klusman, R.W., 2005. Baseline studies of surface gas exchange and soil–gas composition in preparation for CO2 sequestration research: Teapot Dome, Wyoming USA. Am. Assoc. Pet. Geol. Bull. 89, 981–1003. Klusman, R.W., 2006. Detailed compositional analysis of gas seepage at theNational Carbon Storage Test Site, Teapot Dome,Wyoming USA. Appl. Geochem. 21, 1498–1521. Klusman, R.W., Jakel, M.E., LeRoy, M.P., 1998. Does microseepage of methane and light hydrocarbons contribute to the atmospheric budget of methane and to global climate change? Assoc. Petrol. Geochem. Explor. Bull. 11, 1–55. Klusman, R.W., Leopold, M.E., LeRoy, M.P., 2000a. Seasonal variation in methane fluxes fromsedimentary basins to the atmosphere: results fromchambermeasurements and modeling of transport from deep sources. J. Geophys. Res. (105D), 24,661–24,670. Klusman, R.W., Moore, J.N., LeRoy, M.P., 2000b. Potential for surface gas flux measurements in exploration and surface evaluation of geothermal resources. Geothermics 29, 637–670. Kvenvolden, K.A., Rogers, B.W., 2005. Gaia's breath — global methane exhalations. Mar. Pet. Geol. 22, 579–590. Laubmeyer, G., 1933. A New Geophysical Prospecting Method, Especially for Deposits of Hydrocarbons: Petrol. London, vol. 29, p. 14. Link, W.K., 1952. Significance of oil and gas seeps in world oil exploration. Am. Assoc. Pet. Geol. Bull. 36, 1505–1540. Liu, Q., Chan, L., Liu, Q., Li, H., Wang, F., Zhang, S., Xia, X., Cheng, T., 2004. Relationship between magnetic anomalies and hydrocarbon microseepage above the Jingbian gas field, Ordos basin, China. Am. Assoc. Pet. Geol. Bull. 88 (2), 241–251. Livingston, G.P., Hutchinson, G.L., 1995. Enclosure-based measurement of trace gas exchange: Applications and sources of errors. In: Matson, P.A., Harriss, R.C. (Eds.), Biogenic Trace Gases: Measuring Emissions from Soil and Water. Blackwell Science, Oxford, pp. 14–51. Macgregor, D.S., 1993. Relationships between seepage, tectonics and subsurface petroleum reserves. Mar. Pet. Geol. 10, 606–619. Magoon, L.B., Schmoker, J.W., 2000. The Total Petroleum System — The Natural Fluid Network that Constraints the Assessment Units. U.S. Geological Survey World Petroleum Assessment 2000 — Description and results: USGS Digital Data Series 60, World Energy Assessment Team, p. 31. Matthews, M.D., 1996. Hydrocarbon migration—a view from the top. In: Schumacher, D., Abrams, M.A. (Eds.), Hydrocarbon Migration and Its Near-Surface Expression: Amer. Assoc. Petrol. Geol. Memoir, vol. 66, pp. 139–155. Tulsa, OK. Matthews, E., Fung, I., 1987. Methane emissions from natural wetlands: global distribution and environmental characteristics of sources. Glob. Biogeochem. Cycles 1, 61–86. Minami, K., Takata, K., 1997. Atmospheric methane: sources, sinks, and strategies for reducing agricultural emissions. Water Sci. Technol. 36 (6–7), 509–516. Pawlewicz, M.J., Steinshouer D.W., Gautier D.L. (Compiled by), 2001. Map Showing Geology, Oil and Gas Fields, and Geologic Provinces of Europe Including Turkey. USGS, Open File Report 97-470I. Potter, C.S., Davidson, E.A., Verchot, L.V., 1996. Estimation of global biogeochemical controls and seasonality in soilmethane consumption. Chemosphere 32, 2219–2246. Price, L.C., 1986. A critical overview and proposed working model of surface geochemical exploration. Unconventional Methods in Exploration for Petroleum and Natural Gas IV — Southern Methododist. Univ. Press, pp. 245–309. Scharffe, D., Hao, W.M., Donoso, L., Crutzen, P.J., Sanhueza, E., 1990. Soil fluxes and atmospheric concentration of CO and CH4 in the northern part of the Guyana Shield, Venezuela. J. Geophys. Res. 95, 22,475–22,480. Schumacher, D., Abrams, M.A., 1996. Hydrocarbon migration and its near surface expression. Amer. Assoc. Petrol. Geol: Memoir, vol. 66. 446 pp. Schumacher, D., LeSchack, L.A., 2002. Surface exploration case histories: applications of geochemistry, magnetics, and remote sensing. Amer. Assoc. Petrol. Geol.: Studies in Geology, No. 48, SEQ Geophysical References Series No. 11. 486 pp. Tang, J., Bao, Z., Xiang, W., Gou, Q., 2007. Daily variation of natural emission of methane to the atmosphere and source identification in the Luntai Fault region of the Yakela condensed oil/gas field in the Talimu basin, Xinjiang, China. Acta Geologica Sinica, 81, 771–778. Tang, J., Bao, Z., Xiang, W., Gou, Q., 2008. Geological emission of methane from the Yakela condensed oil/gas field in Talimu Basin, Xinjiang, China. J. Envir. Sci., 20, 1055–1062. Tedesco, S.A., 1995. Surface Geochemistry in Petroleum Exploration. Chapman & Hall, New York. 206 pp. Tucker, J., Hitzman, D., 1996. Long-term and seasonal trends in the response of hydrocarbon-utilizing microbes to light hydrocarbon gases in shallow soils. In: Schumacher, D., Abrams, M.A. (Eds.), Hydrocarbon Migration and Its Near-surface Expression: Amer. Assoc. Petrol. Geol. Memoir, vol. 66, pp. 353–357. USGS National Oil and Gas Resource Assessment Team, 1995. 1995 National Assessment of United States Oil and Gas Resources: U.S. Geological Survey Digital Data Series DDS-30. http://energy.cr.usgs.gov/oilgas/noga/. USGS World Energy Assessment Team, 2000. U.S. Geological Survey World Petroleum Assessment 2000. Description and Results. : Digital Data Series —DDS-60. U.S. Dept. of the Interior, U.S.G.S. van der Meer, F., van Dijk, P., van der Werff, H., Yang, H., 2002. Remote sensing and petroleum seepage: a review and case study. Terra Nova 14 (1), 1–17. Voitov, G.I., 1975. Gas breath of Earth. Nature (n.3), 91–98 (in Russian). Wagner, M., Wagner, M., Piske, J., Smit, R., 2002. Case histories of microbial prospection for oil and gas, onshore and offshore northwest Europe. In: Schumacher, D., LeSchack, L.A. (Eds.), Surface Exploration Case Histories: Applications of Geochemistry, Magnetics and Remote Sensing: Amer. Assoc. Petrol. Geol. Studies in Geology No.48 and SEG Geophys.Ref. Series No.11, pp. 453–479. Whiticar, M.J., 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol. 161, 291–314.en
dc.description.obiettivoSpecifico4.5. Studi sul degassamento naturale e sui gas petroliferien
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.contributor.authorEtiope, G.en
dc.contributor.authorKlusman, R. W.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentDept. of Chemistry and Geochemistry, Colorado School of Mines, Golden, Co., 80401, United Statesen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptDept. of Chemistry and Geochemistry, Colorado School of Mines, Golden, Co., 80401, United States-
crisitem.author.orcid0000-0001-8614-4221-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Article.pdf1.77 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 10

75
checked on Feb 10, 2021

Page view(s) 10

1,082
checked on Mar 27, 2024

Download(s)

46
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric