Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/616
DC FieldValueLanguage
dc.contributor.authorallD'Antonio, M.; Università Federico II, Dipartimento di scienze della terra e Instituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuvianoen
dc.contributor.authorallKristensen, M. B.; University of Aarhus, Department of Earth Sciencesen
dc.date.accessioned2006-01-17T20:19:39Zen
dc.date.available2006-01-17T20:19:39Zen
dc.date.issued2004-12en
dc.identifier.urihttp://hdl.handle.net/2122/616en
dc.description.abstractSerpentine minerals and brucite in ultramafic rocks from the South Chamorro Seamount were characterized chemically to investigate the serpentinization of the Mariana forearc mantle. Relict primary minerals of the serpentinites are olivine, enstatite and minor Cr-spinel and diopside. The secondary minerals are mostly serpentine and brucite with minor magnetite. The serpentine minerals, mostly lizardite and chrysotile, display large compositional variations. Al2O3 and Cr2O3 contents depend generally upon the nature of the primary mineral from which the serpentine was derived. Both serpentine minerals and brucite exhibit wide Mg, Fe and Mn substitution: the Mg# ranges are 95.1 77.2 and 88.9 60.8, respectively. These mineralogical and chemical features allowed us to estimate an upper temperature limit for serpentinization of ~200 300ºC, in agreement with recent thermal models which suggest that the serpentinized mantle wedge of the Izu-Bonin-Mariana subduction zone is cold. The high degree of serpentinization (40 100%, average >75%), and the serpentine + brucite paragenesis of these ultramafics imply that the Mariana forearc mantle has a significantly reduced density and strength down to ~30 km, which provides a driving mechanism for serpentinite diapirism. Pervasive serpentinization of the forearc by fluids released from the de´collement zone also explains the low seismicity of the Izu-Bonin-Mariana subduction zone.en
dc.format.extent441 bytesen
dc.format.extent5661496 bytesen
dc.format.mimetypetext/htmlen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameMineralogical Societyen
dc.relation.ispartofMineralogical Magazineen
dc.relation.ispartofseries68(6)en
dc.subjectserpentinizationen
dc.subjectmineral chemistryen
dc.subjectserpentine mud volcanoen
dc.subjectOcean Drilling Programen
dc.subjectforearc mantleen
dc.titleSerpentine and brucite of ultramafic clasts from the South Chamorro Seamount (Ocean Drilling Program Leg 195, Site 1200): inferences for the serpentinization of the Mariana forearc mantleen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber887–904en
dc.identifier.URLhttp://www.minersoc.orgen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrologyen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistryen
dc.identifier.doi10.1180/0026461046860229en
dc.relation.referencesAgrinier, P., Me´vel, C. and Girardeau, J. (1988) Hydrothermal alteration of the peridotites cored at the ocean/continent boundary of the Iberian margin: petrologic and stable isotope evidence. Pp. 225 234 in: Proceedings of the Ocean Drilling Program, Scientific Results, 103 (G. Boillot, E.L. Winterer et al., editors). Ocean Drilling Program, College Station, TX, USA. Agrinier, P., Cornen, G. and Beslier, M.-O. (1996) Mineralogical and oxygen isotopic features of serpentinites recovered from the ocean/continent transition in the Iberia Abyssal Plain. Pp. 541 552 in: Proceedings of the Ocean Drilling Program, Scientific Results, 149 (R.B. Whitmarsh, D.S. Sawyer, A. Klaus and D.G. Masson, editors). Ocean Drilling Program, College Station, TX, USA. Anthony, J.W., Bideaux, R.A., Bladh, K.W. and Nichols, M.C. (1997) Handbook of Mineralogy, Volume III, Halides, Hydroxides, Oxides. Mineral Data Publishing, Tucson, AZ, USA. Bailey, E. and Holloway, J. (2000) Experimental determination of elastic properties of talc to 800ºC, 0.5 GPa; calculation of the effect on hydrated peridotite, and implications for cold subduction zones. Earth and Planetary Science Letters, 183, 487 498. Beard, J.S. and Hopkinson, L. (2000) A fossil, serpentinization-related hydrothermal vent, Ocean Drilling Program Leg 173, Site 1068 (Iberia Abyssal Plain): Some aspects of mineral and fluid chemistry. Journal of Geophysical Research, 105, 16,527 16, 539. Benton, L.D., Ryan, J.G. and Tera, F. (2001) Boron isotope systematics of slab fluids as inferred from a serpentine seamount, Mariana forearc. Earth and Planetary Science Letters, 187, 273 282. Blake, M.C., Jr., Jayko, A.S., McLaughlin, R.J. and Underwood, M.B. (1988) Metamorphic and tectonic evolution of the Franciscan Complex, northern California. Pp. 1035 1060 in: Metamorphism and Crustal Evolution of the Western United States (W.G. Ernst, editor). Rubey Volume VII, Prentice Hall, New Jersey, USA. Bostock, M.G., Hyndman, R.D., Rondenay, S. and Peacock, S.M. (2002) An inverted continental Moho and serpentinization of the forearc mantle. Nature, 417, 536 538. Brocher, T.M., Parsons, T., Tre´hu, A.M., Snelson, C.M. and Fisher, M.A. (2003) Seismic evidence for widespread serpentinized forearc upper mantle along the Cascadia margin. Geology, 31, 267 270. Deer, W.A., Howie, R.A. and Zussman, J. (1992) An Introduction to the Rock-forming Minerals second edition. Longman Scientific and Technical, Harlow, Essex, UK, 696 pp. Dilek, Y., Coulton, A. and Hurst, S.D. (1997) Serpentinization and hydrothermal veining in peridotites at Site 920 in the MARK area. Pp. 35 59 in: Proceedings of the Ocean Drilling Program, Scientific Results, 153 (J.A. Karson, M. Cannat, D.J. Miller and D. Elthon, editors). Ocean Drilling Program, College Station, TX, USA. Evans, B.W. (1977) Metamorphism of Alpine peridotite and serpentinite. Annual Review of Earth and Planetary Sciences, 5, 397 447. Evans, B.W. (2004) The serpentinite multisystem revisited: chrysotile is metastable. International Geology Review, 46, 479 506. Evans, B.W. and Guggenheim, S. (1988) Talc, pyrophyllite, and related minerals. Pp. 225 294 in: Hydrous Phyllosilicates (exclusive of Micas) (S.W. Bailey, editor). Reviews in Mineralogy, 19, Mineralogical Society of America,Washington, D.C. Evans, B.W. and Trommsdorff, V. (1972) Der einfluss des eisens auf die hydratisierung von duniten. Schweizerische Mineralogische und Petrographische Mitteilungen, 52-2, 251 256. Evans, B.W., Johannes, W., Oterdoom, H. and Trommsdorff, V. (1976) Stability of chrysotile and antigorite in the serpentine multisystem. Petrographische Mitteilungen, 56, 79 93. Fryer, P. (1992) A synthesis of Leg 125 drilling of serpentine seamounts on the Mariana and Izu-Bonin forearcs. Pp. 593 614 in: Proceedings of the Ocean Drilling Program, Scientific Results, 125 (P. Fryer, J.A. Pearce, L.B. Stokking et al., editors). Ocean Drilling Program, College Station, TX, USA. Fryer, P., Wheat, C.G. and Mottl, M.J. (1999) Mariana blueschist mud volcanism: implications for conditions within the subduction zone. Geology, 27, 103 106. Gibson, I.L., Beslier, M.-O., Cornen, G., Milliken, K.L. and Seifert, K.E. (1996) Major- and trace-element seawater alteration profiles in serpentinite formed during the development of the Iberia Margin, Site 897. Pp. 519 527 in: Proceedings of the Ocean Drilling Program, Scientific Results, 149 (R.B. Whitmarsh, D.S. Sawyer, A. Klaus and D.G. Masson, editors). Ocean Drilling Program, College Station, TX, USA. Guggenheim, S. and Eggleton, R.A. (1988) Crystal chemistry, classification, and identification of modulated layer silicates. Pp. 675 725 in: Hydrous Phyllosilicates (exclusive of Micas) (S.W. Bailey, editor). Reviews in Mineralogy, 19, Mineralogical Society of America,Washington, D.C. Heling, D. and Schwarz, A. (1992) Iowaite in serpentinite muds at Sites 778, 779, 780, and 784: a possible cause for the low chlorinity of pore waters. Pp. 313 323 in: Proceedings of the Ocean Drilling Program, Scientific Results, 125 (P. Fryer, J.A. Pearce, L.B. Stokking et al., editors). Ocean Drilling Program, College Station, TX, USA. Hostetler, P.B., Coleman, R.G., Mumpton, F.A. and Evans, B.W. (1966) Brucite in alpine serpentinites. American Mineralogist, 51, 75 98. Hyndman, R.D. and Peacock, S.M. (2003) Serpentinization of the forearc mantle. Earth and Planetary Science Letters, 212, 417 432. Ishii, T., Robinson, P.T., Maekawa, H. and Fiske, R. (1992) Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu-Ogasawara-Mariana forearc, Leg 125. Pp. 445 486 in: Proceedings of the Ocean Drilling Program, Scientific Results, 125 (P. Fryer, J.A. Pearce, L.B. Stokking et al., editors). Ocean Drilling Program, College Station, TX, USA. Janecky, D.R. and Seyfried Jr., W.E. (1986) Hydrothermal serpentinization of peridotite within the oceanic crust: Experimental investigations of mineralogy and major element chemistry. Geochimica et Cosmochimica Acta, 50, 1357 1378. Kimball, K.L. and Evans, C.A. (1988) Hydrothermal alteration of peridotite from the Galicia margin, Iberian peninsula. Pp. 241 251 in: Proceedings of the Ocean Drilling Program, Scientific Results, 103 (G. Boillot, E.L. Winterer et al., editors). Ocean Drilling Program, College Station, TX, USA. Kohls, D.W. and Rodda, J.L. (1967) Iowaite, a new hydrous magnesium hydroxide-ferric oxychloride from the Precambrian of Iowa. American Mineralogist, 52, 1261 1271. Labotka, T.C. and Albee, A.L. (1979) Serpentinization of the Belvidere Mountain ultramafic body, Vermont: mass balance and reaction at the metasomatic front. The Canadian Mineralogist, 17, 831 845. Maekawa, H., Yamamoto, K., Ueno, T., Osada, Y. and Nogami, N. (2004) Significance of serpentinites and related rocks in the high-pressure metamorphic terranes, circum-Pacific regions. International Geology Review, 46, 426 444. Manning, C.E. (1995) Phase-equilibrium controls on SiO2 metasomatism by aqueous fluids in subduction zones: reactions at constant temperature and pressure. International Geology Review, 37, 1074 1093. Moody, J.B. (1976a) Serpentinization: a review. Lithos, 9, 125 138. Moody, J.B. (1976b) An experimental study on the serpentinization of iron-bearing olivines. The Canadian Mineralogist, 14, 462 478. Mottl, M.J. (1992) Pore waters from serpentine seamounts in the Mariana and lzu-Bonin forearcs, Leg 125: evidence for volatiles from the subducting slab. Pp. 373 385 in: Proceedings of the Ocean Drilling Program, Scientific Results, 125 (P. Fryer, J.A. Pearce, L.B. Stokking et al., editors). Ocean Drilling Program, College Station, TX, USA. Mottl, M.J., Komor, S.C., Fryer, P. and Moyer, C.L. (2003) Deep-slab fluids fuel extremophilic Archaea on a Mariana forearc serpentinite mud volcano: Ocean Drilling Program Leg 195. Geochemistry Geophysics and Geosystems, 4(11), 9009, doi: 10.1029/2003GC000588. O’Hanley, D.S. (1996) Serpentinites: Records of Tectonic and Petrological History. Oxford Monographs on Geology and Geophysics No. 34, Oxford University Press, New York, 277 pp. O’Hanley, D.S. and Dyar, M.D. (1993) The composition of lizardite 1T and the formation of magnetite in serpentinites. American Mineralogist, 78, 391 404. Pacheco, J.F., Sykes, L.R. and Scholz, C.H. (1993) Nature of seismic coupling along simple plate boundaries of the subduction type. Journal of Geophysical Research, 98, 14,133 14,160. Page, N.J. (1967) Serpentinization at Burro Mountain, California. Contributions to Mineralogy and Petrology, 14, 321 342. Parkinson, I.J. and Pearce, J.A. (1998) Peridotites from the Izu-Bonin-Mariana forearc (ODP Leg 125): evidence for mantle melting and melt-mantle interactions in a supra-subduction zone setting. Journal of Petrology, 39, 1577 1618. Peacock, S.M. and Hyndman, R.D. (1999) Hydrous minerals in the mantle wedge and the maximum depth of subduction thrust earthquakes. Geophysical Research Letters, 26, 2517 2520. Puga, E., Nieto, J.M., Diaz de Federico, A., Bodinier, J.L. and Morten, L. (1999) Petrology and metamorphic evolution of ultramafic rocks and dolerite dykes of the Betic Ophiolitic Association (Mulhacen Complex, SE Spain): evidence of eo-Alpine subduction following an ocean-floor metasomatic process. Lithos, 49, 23 56. Rock, N.M.S. (1990) The International Mineralogical Association (IMA/CNMMN) pyroxene nomenclature scheme: computerization and its consequences. Mineralogy and Petrology, 43, 99 119. Shipboard Scientific Party (2002) Site 1200. Pp. 1 173 in: Proceedings of the Ocean Drilling Program, Initial Reports, 195 (M.H. Salisbury, M. Shinohara, C. Richter et al., editors). [CD-ROM]. Available from Ocean Drilling Program, Texas A&M University, College Station TX 77845 9547, USA. Shipboard Scientific Party (2003) Leg 209 Preliminary Report. Ocean Drilling Program, Preliminary Report, 109. [Online]. Available from World Wide Web: http://www-odp.tamu.edu/publications/prelim/ 209_prel/209PREL.PDF. Takahashi, N., Suyehiro, K. and Shinohara, M. (1998) Implications from the seismic crustal structure of the northern Izu-Bonin arc. The Island Arc, 7, 383 394. doi: 10.1046/j.1440-1738.1998.00197.x. van Keken, P.E. (2003) The structure and dynamics of the mantle wedge. Earth and Planetary Science Letters, 215, 323 338. Viti, C. and Mellini, M. (1998) Mesh textures and bastites in the Elba retrograde serpentinites. European Journal of Mineralogy, 10, 1341 1359. Wakabayashi, J. (1992) Nappes, tectonics of oblique plate convergence, and metamorphic evolution related to 140 million years of continuous subduction, Franciscan Complex, California. Journal of Geology, 100, 19 40. Wicks, F.J. (1969) X-ray and optical studies of serpentine minerals. PhD dissertation, Oxford, England. Wicks, F.J. and Plant, A.G. (1979) Electron-microprobe and X-ray-microbeam studies of serpentine textures. The Canadian Mineralogist, 17, 785 830. Worden, R.H., Droop, G.T.R. and Champness, P.E. (1991) The reaction antigorite ? olivine + talc + H2O in the Bergell aureole, N. Italy. Mineralogical Magazine, 55, 367 377. Zanetti, A., Vannucci, R., Spadea, P. and D’Antonio, M. (2003) Bulk rock and mineral chemistry of peridotites from Mariana forearc seamounts (ODP Leg 195, Site 1200A, and ODP Leg 125, Sites 779A and 784A) and the petrogenesis of mantle wedge peridotites. Eos Transactions AGU, 84 (46), Fall Meeting Supplement, Abstract V11E 053. Zanetti, A., Spadea, P., D’Antonio, M. and Vannucci, R. (2004) Trace element in clinopyroxene of peridotites from Mariana forearc seamounts (ODP Holes 1200A, 779A, and 784A): evidence for polybaric, high-degree, fractional mantle melting. Earth and Planetary Science Letters, submitted.en
dc.description.fulltextpartially_openen
dc.contributor.authorD'Antonio, M.en
dc.contributor.authorKristensen, M. B.en
dc.contributor.departmentUniversità Federico II, Dipartimento di scienze della terra e Instituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuvianoen
dc.contributor.departmentUniversity of Aarhus, Department of Earth Sciencesen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversità di Napoli "Federico II"-
crisitem.author.dept3Department of Earth Sciences, University of Aarhus, CF Møllers Allé Building 110, DK-8000 Århus, Denmark.-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
DAntonio M.pdf5.53 MBAdobe PDF
mineralogical magazine.htmredirect - mineralogical magazine441 BHTMLView/Open
Show simple item record

WEB OF SCIENCETM
Citations 50

46
checked on Feb 10, 2021

Page view(s) 50

173
checked on Apr 17, 2024

Download(s)

78
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric