Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/614
DC FieldValueLanguage
dc.contributor.authorallDellino, P.; Universita' di Bari, Dipartimento Geomineralogicoen
dc.contributor.authorallIsaia, R.; Instituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuvianoen
dc.contributor.authorallLa Volpe, L.; Universita' di Bari, Dipartimento Geomineralogicoen
dc.contributor.authorallOrsi, G.; Instituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuvianoen
dc.date.accessioned2006-01-16T18:28:24Zen
dc.date.available2006-01-16T18:28:24Zen
dc.date.issued2004en
dc.identifier.urihttp://hdl.handle.net/2122/614en
dc.description.abstractThe Agnano^Monte Spina Tephra (AMST) is a complex sequence of beds generated by contrasting fragmentation and transportation dynamics. The 4.1 ka eruption was accompanied by a volcano-tectonic collapse, part of which is the present Agnano plain. The pyroclastic sequence is subdivided into members and submembers, each characterized by different lithological and sedimentological features. Plinian/subplinian fallout deposits frequently alternate with base-surge beds of phreatomagmatic origin. Analysis of lateral facies variations and vertical facies associations of correlated layers of submembers B2, D2 and E2 reveals that during some eruption phases the contrasting eruptive dynamics were almost contemporaneous. Base-surge deposits of submember B2 formed during the declining stage of a plinian column. They resulted from highly energetic and steady pyroclastic density currents that traveled long distances from the vent area and surmounted topographic obstacles such as the Posillipo hill (V150 m) and the northern sector of the Camaldoli hill (V250 m). Submember D2 pyroclastic density currents formed when contemporaneous fallout from an eruptive column was present. Coarse particles from the column settled throughout the pyroclastic density current, determining a significant increase of the solid load of the base surge. The consequent increase of supply rate from the transportation to the depositional zone of the base surge led to the formation of unsteady flows that could not efficiently transport the solid load and did not have the ability to travel long distances. Base-surge deposits of submember E2 were fed by a pulsating phreatomagmatic activity, which was punctuated by a short-lived fallout phase. Fallout material, which was incorporated as an additional load to the base surges, was partially transported by low-energy, steady pyroclastic density currents that traveled over the Agnano plain but did not surmount either the Camaldoli or the Posillipo hills. Only the very fine material, in continuous suspension in the upper, no-shearing part of the base-surge cloud, was dispersed higher in the atmosphere and quietly settled over a large area outside the caldera rim. The phreatomagmatic origin of base surges, which contrasts with the magmatic origin of fallout activity, suggests that the pyroclastic density currents of the Agnano^Monte Spina eruption did not result from eruption column collapses. They were most likely related to radially spreading clouds which were contemporaneous with fallout activity but issued from distinct zones in the vent area. The turbulent nature and the high expansion of base surges made them capable, under certain conditions, of passing over high topographic obstacles, with hazardous effects in distal areas.en
dc.format.extent497 bytesen
dc.format.extent1774996 bytesen
dc.format.mimetypetext/htmlen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameElsevier Scientific Publishersen
dc.relation.ispartofJournal of volcanology and geothermal researchen
dc.relation.ispartofseries133en
dc.subjectbase-surge depositsen
dc.subjectCampi Flegreien
dc.subjectphreatomagmatismen
dc.subjectfallout depositsen
dc.titleInteraction between particles transported by fallout and surge in the deposits of the Agnano-Monte Spina eruption (Campi Flegrei, Southern Italy)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber193-210en
dc.identifier.URLwww.elsevier.com/locate/jvolgeoresen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transporten
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocksen
dc.identifier.doi10.1016/S0377-0273(03)00398-6en
dc.relation.referencesBrissette, F.P., Lajoie, J., 1990. Depositional mechanics of turbulent nue¤es ardentes (surges) from their grain sizes. Bull. Volcanol. 53, 60^66. Bursik, M.R., Woods, A.W., 1991. Buoyant, superbuoyant and collapsing eruption columns. J. Volcanol. Geotherm. Res. 45, 347^350. Cioni, R., Sbrana, A., Vecci, R., 1992. Morphologic featuresof juvenile pyroclasts from magmatic and phreatomagmatic deposits of Vesuvius. J. Volcanol. Geotherm. Res. 51, 61^67. Civetta, L., Orsi, G., Pappalardo, L., Fisher, R.V., Heiken, G., Ort, M., 1997. Geochemical zoning, mingling, eruptive dynamics and depositional processes - The Campanian Ignimbrite, Campi Flegrei caldera, Italy. J. Volcanol. Geotherm. Res. 75, 183^219. Dellino, P., La Volpe, L., 1995. Fragmentation versus transportation mechanisms in the pyroclastic sequence of Monte Pilato - Rocche Rosse (Lipari, Italy). J. Volcanol. Geotherm. Res. 64, 211^232. Dellino, P., La Volpe, L., 2000. Structures and grain size distribution in surge deposits as a tool for modelling the dynamics of dilute pyroclastic density currents at La Fossa di Vulcano (Aeolian Islands, Italy). J. Volcanol. Geotherm. Res. 96, 57^78. Dellino, P., Isaia, R., La Volpe, L., Orsi, G., 2001. Statistical analysis of textural data from complex pyroclastic sequences: implications for fragmentation processes of the Agnano- Monte Spina tephra (4.1 ka), Campi Flegrei, southern Italy. Bull. Volcanol. 63, 443^461. Dellino, P., Isaia, R., Veneruso, M., 2004. Turbulent boundary layer shear £ows as an approximation of base surges at Campi Flegrei. J. Volcanol. Geotherm. Res. 133, this volume, doi: 10.1016/S0377-0273(03)00399-8. de Vita, S., Orsi, G., Civetta, L., Carandente, A., D’Antonio, M., Di Cesare, T., Di Vito, M., Fisher, R.V., Isaia, R., Marotta, E., Ort, M., Pappalardo, L., Piochi, M., Southon, J., 1999. The Agnano-Monte Spina eruption (4.1 ka) in the resurgent, nested Campi Flegrei caldera (Italy). J. Volcanol. Geotherm. Res. 91, 269^301. Di Girolamo, P., Ghiara, M.R., Lirer, L., Munno, R., Rolandi, G., Stanzione, A., 1984. Vulcanologia e petrologia dei Campi Flegrei. Boll. Soc. Geol. It. 103, 349^413. Di Vito, M.A., Lirer, L., Mastrolorenzo, G., Rolandi, G., 1987. The Monte Nuovo eruption (Campi Flegrei, Italy). Bull. Volcanol. 49, 608^615. Di Vito, M.A., Isaia, R., Orsi, G., Southon, J., de Vita, S., D’Antonio, M., Pappalardo, L., Piochi, M., 1999. Volcanic and deformational history of the Campi Flegrei caldera in the past 12 ka. J. Volcanol. Geotherm. Res. 91, 221^246. Fisher, R.V., Orsi, G., Ort, M., Heiken, G., 1993. Mobility of large-volume pyroclastic flow-emplacement of the Campanian Ignimbrite, Italy. J. Volcanol. Geotherm. Res. 56, 205^220. Houghton, B.F., Hackett, W.R., 1984. Strombolian and phreatomagmatic deposits of Ohaune craters, Ruhapehu, New Zealand: a complex interaction between external water and rising basaltic magma. J. Volcanol. Geotherm. Res. 21, 207^231. Houghton, B.F., Schmincke, H.U., 1986. Mixed deposits of simultaneous strombolian and phreatomagmatic volcanism: Rothenberg volcano, East Eifel Volcanic Field. J. Volcanol. Geotherm. Res. 30, 117^130. Houghton, B.F., Schmincke, H.U., 1989. Rothenberg scoria cone, East Eifel: a complex strombolina and phreatomagmatic volcano. Bull. Volcanol. 52, 28^48. Lajoie, J., Boudon, G., Bourdier, J.L., 1989. Depositional mechanics of the 1902 pyroclastic nue¤e ardente deposits of Mt. Pelee, Martinique. J. Volcanol. Geotherm. Res. 38, 131^142. Lirer, L., Mastrolorenzo, G., Rolandi, G., 1987. Un evento pliniano nell’attivita' recente dei Campi Flegrei. Boll. Soc. Geol. It. 106, 461^473. Lowe, D.R., 1982. Sediment gravity £ows: depositional models with special reference to the deposits of high-density turbidity currents. J. Sediment. Petrol. 52, 279^297. Lowe, D.R., 1988. Suspended-load fallout rate as an independent variable in the analysis of current structures. Sedimentology 35, 765^776. Miller, M.C., McCave, I.N., Komar, P.D., 1977. Threshold of sediment motion under unidirectional currents. Sedimentology 24, 507^527. Neri, A., Dobran, F., 1994. In£uence of eruption parameters on the thermofluid dynamics of collapsing volcanic columns. J. Geophys. Res. 99, 11833^11857. Orsi, G., D’Antonio, M., de Vita, S., Gallo, G., 1992. The Neapolitan Yellow Tuff, a large-magnitude trachytic phreatoplinian eruption: eruptive dynamics, magma withdrawal and caldera collapse. J. Volcanol. Geotherm. Res. 53,275^287. Orsi, G., Civetta, L., D’Antonio, M., Di Girolamo, P., Piochi, M., 1995. Step-filling and development of a three-layers magma chamber: the Neapolitan Yellow Tu¡ case history. J. Volcanol. Geotherm. Res. 67, 291^312. Orsi, G., de Vita, S., Di Vito, M., 1996. The restless, resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration. J. Volcanol. Geotherm. Res. 74, 179^214. Orsi, G., Civetta, L., Del Gaudio, C., de Vita, S., Di Vito, M.A., Isaia, R., Petrazzuoli, S., Ricciardi, G., Ricco, C., 1999a. Short-term ground deformations and seismicity in the nested Campi Flegrei caldera (Italy): an example of active block resurgence in a densely populated area. J. Volcanol. Geotherm. Res. 91, 415^451. Orsi, G., Patella, D., Piochi, M., Tramacere, A., 1999b. Magnetic modeling of the Phlegraean Volcanic District with extension to the Ponza archipelago, Italy. J. Volcanol. Geotherm. Res. 91, 345^360. Orsi, G., Di Vito, M.A., Isaia, R., 2004. Volcanic hazards assessment at the restless Campi Flegrei caldera. Bull. Volcanol., in press. Ort, M.H., Wohletz, K., Hooten, J.A., Neal, C.A., McConnell, V.S., 2000. The Ukinrek maars eruption, Alaska, 1977: a natural laboratory for the study of phreatomagmatic processes at maars. Terra Nostra 6 (2000) 396, 400. Rosi, M., Sbrana, A., Principe, C., 1983. The Campi Flegrei: Structural evolution, volcanic history and eruptive mechanism. J. Volcanol. Geotherm. Res. 17, 273^288. Rosi, M., Santacroce, R., 1984. Volcanic hazard assessment in the Phlegeran Fields: a contribution based on stratigraphic and historical data. Bull. Volcanol. 47, 359^370. Rosi, M., Sbrana, A. (Eds.), 1987. Campi Flegrei. CNR Quad. Ric. Sci. 114(9), Rome,167 pp. Rosi, M., Vezzoli, L., Aleotti, P., De Cenzi, M., 1996. Interaction between caldera collapse and eruptive dynamics during the Campanian Ignimbrite eruption, Campi Flegrei, Italy. Bull. Volcanol. 57, 541^554. Rosi, M., Paladio-Melosantos, M.L., Di Muro, A., Leoni, R., Bacolcol, T., 2001. Fall vs flow activity during the 1991 climactic eruption of Pinatubo Volcano (Philippines). Bull. Volcanol. 62, 549^566. Rouse, H., 1937. Modern conceptions of the mechanics of turbulence. Trans. Am. Soc. Civ. Eng. 102, 436^505. Self, S., Kienle, J., Huot, J.P., 1980. Ukinrek maars, Alaska. II. Deposits and formation of the 1977 craters. J. Volcanol. Geotherm. Res. 7, 39^65. Sohn, Y.K., 1997. On traction-carpet sedimentation. J. Sediment. Res. 67, 502^509. Sohn, Y.K., Chough, S.K., 1989. Depositional processes of the Suwolbong tuff ring, Cheju Island (Korea). Sedimentology 36, 837^855. Valentine, G.A., 1987. Stratified flow in pyroclastic surges. Bull. Volcanol. 49, 616^630. Valentine, G.A., Wohletz, K.H., Kieffer, S.W., 1992. Effects of topography on facies and compositional zonation in caldera related ignimbrites. Geol. Soc. Am. Bull. 104, 154^165. Walker, G.P.L., 1984. Characteristics of dune-bedded pyroclastic surge bedsets. J. Volcanol. Geotherm. Res. 20, 281^296. Wohletz, K., Orsi, G., de Vita, S., 1995. Eruptive mechanisms of the Neapolitan Yellow Tuff interpreted from stratigraphic, chemical and granulometric data. J. Volcanol. Geotherm. Res. 67, 263^290. Zimanowski, B., Frohlic, G., Lorenz, V., 1991. Quantitative experiments on phreatomagmatic explosions. J. Volcanol. Geotherm. Res. 48, 341^358.en
dc.description.fulltextpartially_openen
dc.contributor.authorDellino, P.en
dc.contributor.authorIsaia, R.en
dc.contributor.authorLa Volpe, L.en
dc.contributor.authorOrsi, G.en
dc.contributor.departmentUniversita' di Bari, Dipartimento Geomineralogicoen
dc.contributor.departmentInstituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuvianoen
dc.contributor.departmentUniversita' di Bari, Dipartimento Geomineralogicoen
dc.contributor.departmentInstituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuvianoen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversita' di Bari, Dipartimento Geomineralogico-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptUniversita' di Bari, Dipartimento Geomineralogico-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0001-6927-4905-
crisitem.author.orcid0000-0001-7277-2358-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Dellino1.pdf1.73 MBAdobe PDF
journal volcanology geothermal research.htmredirect - journal of volcanology and geothermal research497 BHTMLView/Open
Show simple item record

WEB OF SCIENCETM
Citations 50

48
checked on Feb 10, 2021

Page view(s)

165
checked on Mar 27, 2024

Download(s)

77
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric