Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6148
DC FieldValueLanguage
dc.contributor.authorallDinarès-Turell, J.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallStoykova, K.; Department of Paleontology and Stratigraphy, Geological Institute, Bulgarian Academy of Science, BG-1113 Sofia, Bulgariaen
dc.contributor.authorallBaceta, J. I.; Department of Stratigraphy, Univ. Basque Country, PO Box 644, E-48080 Bilbao, Spainen
dc.contributor.authorallIvanov, M.; Department of Geology and Paleontology, University of Sofia, BG-1000 Sofia, Bulgariaen
dc.contributor.authorallPujalte, V.; Department of Stratigraphy, Univ. Basque Country, PO Box 644, E-48080 Bilbao, Spainen
dc.date.accessioned2010-10-12T10:34:19Zen
dc.date.available2010-10-12T10:34:19Zen
dc.date.issued2010-09-16en
dc.identifier.urihttp://hdl.handle.net/2122/6148en
dc.description.abstractThe Danian–Selandian (D–S) boundary has been identified for the first time in the Black Sea coast at Bjala (Bulgaria) based on a new integrated bio-, magneto- and cyclostratigraphic study. Several correlation criteria as established for the basal Selandian GSSP from Zumaia (Basque Basin) are evaluated. Noteworthy, is the almost complete lack of calcareous nannoplankton species Braarudosphaera bigelowi in the Bulgarian sections, a sharp decrease of which was indicated as suitable criteria for defining the D–S boundary as it occurred both at Zumaia and in the classical locations of the North Sea basin. Conversely, the second evolutionary radiation of the calcareous nannofossil genus Fasciculithus together with the occurrence of Fasciculithus tympaniformis that define the NP4/NP5 zonal boundary seem to be reliable criteria to approximate the D–S boundary. In detail, however, the best approach is to integrate biostratigraphic data within a magnetostratigraphic and/or cyclostratigraphic framework. Refinements on the placement of chron C27n at Zumaia and robust bed-by-bed correlation between several Basque sections and Bjala indicates that the D–S boundary is located 30 precession cycles (~630 ky) above C27n. In addition to the precession-related marl–limestone couplets and 100-ky eccentricity bundles recognized in the studied sections, expression of the stable 405-ky long eccentricity allows direct tuning to the astronomical solutions. A correlation of the land-based sections with previously tuned data from ODP Site1262 from the Southern Atlantic is challenged. Our choice is consistent with original tuning at Zumaia but shifts one 100-ky cycle older previous tuning from Site 1262 along the interval above C27n. Under the preferred tuning scheme the D–S boundary can be given an age of 61.641± 0.040 Ma on the La04 orbital solution.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofPalaeogeography Palaeoclimatology Palaeoecologyen
dc.relation.ispartofseries/ 297 (2010)en
dc.subjectPaleoceneen
dc.subjectMagnetostratigraphyen
dc.subjectOrbital tuningen
dc.subjectCalcareous nannofossilsen
dc.subjectSelandian GSSPen
dc.titleHigh-resolution intra- and interbasinal correlation of the Danian–Selandian transition (Early Paleocene): The Bjala section (Bulgaria) and the Selandian GSSP at Zumaia (Spain)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber511-533en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transporten
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.10. Stratigraphyen
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetismen
dc.identifier.doi10.1016/j.palaeo.2010.09.004en
dc.relation.referencesAdatte, T., Keller, G., Burns, S., Stoykova, K.H., Ivanov, M.I., Vangelov, D., Kramar, U., Stueben, D., 2002. Paleoenvironment across the Cretaceous–Tertiary transition in eastern Bulgaria. Special Paper — Geological Society of America 356, 231–251. Agnini, C., Fornaciari, E., Raffi, I., Rio, D., Roehl, U., Westerhold, T., 2007. High-resolution nannofossil biochronology of middle Paleocene to early Eocene at ODP Site 1262; implications for calcareous nannoplankton evolution. Marine Micropaleontology 64, 215–248. Arenillas, I., Molina, E., Ortiz, S., Schmitz, B., 2008. Foraminiferal and delta (super 13) C isotopic event-stratigraphy across the Danian–Selandian transition at Zumaya (northern Spain); chronostratigraphic implications. Terra Nova 20, 38–44. Bernaola, G., 2002. Los nannofósiles calcáreos del Paleoceno en el dominio Pirenaico. Bioestratigrafía, cronoestratigrafía y paleoecología: Leioa. Doctoral thesis. University of the Basque Country, 445 pp. Bernaola, G., Martín-Rubio, M., Baceta, J.I., 2009. New high resolution calcareous nannofossil analysis across the Danian/Selandian transition at the Zumaia section: comparison with South Tethys and Danish sections. Geologica Acta 7, 79–92. Bornemann, A., Schulte, P., Sprong, J., Steurbaut, E., Youssef, M., Speijer, R.P., 2009. Latest Danian carbon isotope anomaly and associated environmental change in the southern Tethys (Nile Basin, Egypt). Journal of the Geological Society of London 166, 1135–1142. Bown, P.R. (Ed.), 1998. Calcareous Nannofossil Biostratigraphy. Kluwer Academic, London, p. 315. Channell, J.E.T., Freeman, R., Heller, F., Lowrie, W., 1982. Timing of diagenetic haematite growth in red pelagic limestones from Gubbio (Italy). Earth and Planetary Science Letters 58, 189–201. Clemmensen, A., Thomsen, E., 2005. Palaeoenvironmental changes across the Danian– Selandian boundary in the North Sea Basin. Palaeogeography, Palaeoclimatology, Palaeoecology 219, 351–394. Dabovski, Ch., Zagorchev, I., 2009. Introduction: Mesozoic evolution and Alpine Structure. In: Zagorchev, I., Dabovski, Ch., Nikolov, T. (Eds.), Geology of Bulgaria. : Mesozoic geology, vol. 2. Academic Press, Sofia, pp. 13–37. Dekkers, M.J., Linssen, J.H., 1989. Rockmagnetic properties of fine-grained natural lowtemperature haematite with reference to remanence acquisition mechanisms in red beds. Geophysical Journal of the Royal Astronomical Society 99, 1–18. Dinarès-Turell, J., Dekkers, M., 1999. Inferred multistage diagenetic pathway for the Early Pliocene Trubi marls at Punta di Maiata (southern Sicily): paleomagnetic and rock-magnetic observations. In: Tarling, D.H., Turner, P. (Eds.), Palaeomagnetism and Diagenesis in Sediments: Geol. Soc. London Spec. Publ., 15, pp. 53–69. Dinarès-Turell, J., Baceta, J.I., Pujalte, V., Orue-Etxebarria, X., Bernaola, G., Lorito, S., 2003. Untangling the Palaeocene climatic rhythm; an astronomically calibrated early Palaeocene magnetostratigraphy and biostratigraphy at Zumaia (Basque Basin, northern Spain). Earth and Planetary Science Letters 216, 483–500. Dinarès-Turell, J., Diez, J.B., Rey, D., Arnal, I., 2005. “Buntsandstein” magnetostratigraphy and biostratigraphic reappraisal from eastern Iberia; Early and Middle Triassic stage boundary definitions through correlation to Tethyan sections. Palaeogeography, Palaeoclimatology, Palaeoecology 229, 158–177. Dinarès-Turell, J., Baceta, J.I., Bernaola, G., Orue-Etxebarria, X., Pujalte, V., 2007. Closing the Mid-Palaeocene gap: toward a complete astronomically tuned Palaeocene Epoch and Selandian and Thanetian GSSPs at Zumaia (Basque Basin, W Pyrenees). Earth and Planetary Science Letters 262, 450–467. Fuqua, L., Bralower, T., Arthur, M., Patzkowsky, M., 2008. Evolution of calcareous nannoplankton and recovery of marine food webs after the Cretaceous–Paleocene mass extinction. Palaios 23, 185–194. Guasti, E., Speijer, R.P., Brinkhuis, H., Smit, J., Steurbaut, E., 2006. Paleoenvironmental change at the Danian–Selandian transition in Tunisia; Foraminifera, organic-walled dinoflagellate cyst and calcareous nannofossil records. Marine Micropaleontology 59, 210–229. Ivanov, M., Stoykova, K., 1994. Cretaceous/Tertiary boundary in the area of Bjala, Eastern Bulgaria — biostratigraphical results. Geologica Balcanica 24, 3–23. Kirschvink, J.L., 1980. The least-squares line and plane and the analysis of palaeomagnetic data. Geophysical Journal of the Royal Astronomical Society 62, 699–718. Kuiper, K.F., Deino, A., Hilgen, F.J., Krijgsman, W., Renne, P.R., Wijbrans, J.R., 2008. Synchronizing rock clocks of Earth history. Science 320, 500–504. Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M., Levrard, B., 2004. A longterm numerical solution for the insolation quantities of the Earth. Astronomy Astrophysics 428, 261–285. Martini, E., 1971. In: Farinacci, A. (Ed.), Standard Tertiary and Quaternary Calcareous Nannoplankton Zonation: Proc. II Plankt. Conference Roma, 1970, 2, Tecnoscienza, pp. 739–785. Perch-Nielsen, K., 1985. In: Bolli, H.M., Saunders, J.B., Perch-Nielsen, K. (Eds.), Mesozoic Calcareous Nannofossils. Cenozoic Calcareous Nannofossils. : Plankton Stratigraphy. Cambridge University Press, Cambridge. 329–426, 427–554. Peybernes, B., Fondecave-Wallez, M.J., Stoykova, K., Ciszak, R., Ivanov, M., Nikolov, T., 2004. Location of the Cretaceous–Tertiary boundary in Bulgaria by means of the planktonic foraminifera. Geobios 37, 755–769. Preisinger, A., Aslanian, S., Stoykova, K., Grass, F., Mauritsch, H.J., Scholger, R., 1993. Cretaceous/Tertiary boundary sections on the coast of the Black Sea near Bjala (Bulgaria). Palaeogeography, Palaeoclimatology, Palaeoecology 104, 219–228. Preisinger, A., Aslanian, S., Brandstaetter, F., Grass, F., Stradner, H., Summesberger, H., 2002. Cretaceous–Tertiary profile, rhythmic deposition, and geomagnetic polarity reversals of marine sediments near Bjala, Bulgaria. Special Paper — Geological Society of America 356, 213–229. Remane, J., Bassett, M.G., Cowie, J.W., Gohrbandt, K.H., Lane, H.R.,Michelsen, O., Wang, N., 1996. Revised guidelines for the establishment of global chronostratigraphic standards by the International Commission on Stratigraphy (ICS). Episodes 19, 77–81. Roy, J.L., Lapointe, P.L., 1978. Multiphase magnetizations: problems and implications. Physics of the Earth and Planetary Interiors 16, 20–37. Roy, J.L., Park, J.K., 1972. Red beds: DRM or CRM? Earth and Planetary Science Letters 17, 211–216. Schmitz, B., Asaro, F., Molina, E., Monechi, S., von Salis, K., Speijer, R.P., 1997. Highresolution iridium, delta (super 13) C, delta (super 18) O, foraminifera and nannofossil profiles across the latest Paleocene benthic extinction event at Zumaya, Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 133, 49–68.Schmitz, B., Molina, E., von Salis, K., 1998. The Zumaya section in Spain; a possible global stratotype section for the Selandian and Thanetian stages. Newsletters on Stratigraphy 36, 35–42. Schmitz, B., Alegret, L., Apellaniz, E., et al., 2008. Proposed Global Stratotype Sections and Points for the bases of the Selandian and Thanetian stages (Paleocene Series). http://www.earth-prints.org/bitstream/2122/3795/1/pwg20.pdf. Schmitz, B., Pujalte, V., Molina, E. et al. (submitted for publication). The global stratotype sections and points for the bases of the Selandian (Middle Paleocene) and Thanetian (Upper Paleocene) stages at Zumaia, Spain. Episodes. Schulte, P., Bornemann, A., Speijer, R.P., 2010. The Top Chron C27n Event on the Western Atlantic: Evidence for a Transient Perturbation of the Carbon Cycle in the Late Danian: Geophysical Research Abstracts, Vol. 12. EGU2010-13049, EGU General Assembly 2010. Speijer, R.P., 2003. Danian–Selandian sea-level change and biotic excursion on the southern Tethyan margin (Egypt). Special Paper—Geological Society of America 369, 275–290. Speijer, R.P., Schmitz, B., 1998. A benthic foraminiferal record of Paleocene sea level and trophic/redox conditions at Gebel Aweina, Egypt. Palaeogeography, Palaeoclimatology, Palaeoecology 137, 79–101. Sprong, J., Speijer, R.P., Steurbaut, E., 2009. Biostratigraphy of the Danian/Selandian transition in the southern Tethys. Special reference to the lowest occurrence of planktic foraminifera Igorina albeari. Geologica Acta 7, 63–77. Steurbaut, E., Sztrákos, K., 2008. Danian/Selandian boundary criteria and North Sea basin–Tethys correlation based on calcareous nannofossil and foraminiferal trends in SW France. Marine Micropaleontology 67, 1–29. Stoykova, K., Ivanov, M., 1992. An uninterrupted section across the Cretaceous/Tertiary boundary at the town of Bjala, Black Sea coast (Bulgaria). Comptes rendus de l'Académie bulgare des Sciences 45 (7), 61–64. Stoykova, K., Ivanov, M., 2002. The Cretaceous/Tertiary transition in Bulgaria; palaeoenvironmental interpretation from calcareous nannofossils, macrofauna and lithology. Journal of Nannoplankton Research 24, 164–165. Stoykova, K., Ivanov, M., 2004. Calcareous nannofossils and sequence stratigraphy of the Cretaceous/Tertiary transition in Bulgaria. Journal of Nannoplankton Research 26, 47–71. Turner, P., Ixer, R.A., 1977. Diagenetic development of unstable and stable magnetization in the St. Bees Sandstone (Triassic) of northern England. Earth and Planetary Science Letters 34, 113–124. Van-Heck, S.E., Prins, B., Stradner, H., Perch-Nielsen, K., 1987. A refined nannoplankton zonation for the Danian of the central North Sea. Abhandlungen der Geologischen Bundesanstalt 39, 285–303. Varadi, F., Runnegar, B., Ghil, M., 2003. Successive refinements in long-term integrations of planetary orbits. Astrophysical Journal 592, 620–630. Varol, O., 1989. Paleocene calcareous nannofossil biostratigraphy. In: Crux, J., van Heck, S. (Eds.), Nannofossils and their Applications. : British Micropal. Soc. Ser. Ellis Horwood Ltd, Chichester, pp. 267–310. Westerhold, T., Roehl, U., Raffi, I., Forniaciari, E., Monechi, S., Reale, V., Bowles, J., Evans, H.F., 2008. Astronomical calibration of the Paleocene time. Palaeogeography, Palaeoclimatology, Palaeoecology 257, 377–403. Zijderveld, J.D.A., 1967. In: Collinson, D.W., et al. (Ed.), AC Demagnetisation of Rock: Analysis of Results. :Methods in palaeomagnetism. Elsevier,Amsterdam, pp. 254–286.en
dc.description.obiettivoSpecifico2.2. Laboratorio di paleomagnetismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.contributor.authorDinarès-Turell, J.en
dc.contributor.authorStoykova, K.en
dc.contributor.authorBaceta, J. I.en
dc.contributor.authorIvanov, M.en
dc.contributor.authorPujalte, V.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentDepartment of Paleontology and Stratigraphy, Geological Institute, Bulgarian Academy of Science, BG-1113 Sofia, Bulgariaen
dc.contributor.departmentDepartment of Stratigraphy, Univ. Basque Country, PO Box 644, E-48080 Bilbao, Spainen
dc.contributor.departmentDepartment of Geology and Paleontology, University of Sofia, BG-1000 Sofia, Bulgariaen
dc.contributor.departmentDepartment of Stratigraphy, Univ. Basque Country, PO Box 644, E-48080 Bilbao, Spainen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptDepartment of Paleontology and Stratigraphy, Geological Institute, Bulgarian Academy of Science, BG-1113 Sofia, Bulgaria-
crisitem.author.deptDepartment of Stratigraphy, Univ. Basque Country, PO Box 644, E-48080 Bilbao, Spain-
crisitem.author.deptDepartment of Geology and Paleontology, University of Sofia, Sofia BG-1000, Bulgaria-
crisitem.author.deptDepartment of Stratigraphy and Paleontology, University of the Basque Country, UPV/EHU, P.O. Box 644, 48080 Bilbao, Spain-
crisitem.author.orcid0000-0002-5546-2291-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Dinarès-Turell_10_DS_Bjala_Zumaia_Loubieng.pdf7.05 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

26
checked on Feb 10, 2021

Page view(s) 50

158
checked on Apr 17, 2024

Download(s)

28
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric