Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6146
DC FieldValueLanguage
dc.contributor.authorallFloyd, M. A.; Department of Earth Sciences, University of California, California, USAen
dc.contributor.authorallBilliris, H.; Higher Geodesy Laboratory, National Technical University, Athens, Greeceen
dc.contributor.authorallParadissis, D.; Higher Geodesy Laboratory, National Technical University, Athens, Greeceen
dc.contributor.authorallVeis, G.; Higher Geodesy Laboratory, National Technical University, Athens, Greeceen
dc.contributor.authorallAvallone, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallBriole, P.; Ecole Normale Supérieure, Laboratoire de Géologie, Paris, Franceen
dc.contributor.authorallMcClusky, S.; Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USAen
dc.contributor.authorallNocquet, J.-M.; CNRS–GéoAzur, University of Nice, Valbonne, Franceen
dc.contributor.authorallPalamartchouk, K.; Department of Earth Sciences, University of Oxford, Oxford, UKen
dc.contributor.authorallParsons, B. E.; Department of Earth Sciences, University of Oxford, Oxford, UKen
dc.contributor.authorallEngland, P. C.; Department of Earth Sciences, University of Oxford, Oxford, UKen
dc.date.accessioned2010-10-12T07:18:10Zen
dc.date.available2010-10-12T07:18:10Zen
dc.date.issued2010-10-06en
dc.identifier.urihttp://hdl.handle.net/2122/6146en
dc.descriptionAn edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union.en
dc.description.abstractA new set of geodetic velocities for Greece and the Aegean, derived from 254 survey-mode and continuous GPS sites, is used to test kinematic and dynamic models for this area of rapid continental deformation. Modeling the kinematics of the Aegean by the rotation of a small number (3–6) of blocks produces RMS misfits of ~5 mm yr−1 in the southern Aegean and western Peloponnese, indicating significant internal strain within these postulated blocks. It is possible to fit the observed velocities to within 2–3 mm yr−1 (RMS) by models that contain 10 or more blocks, but many such models can be found, with widely varying arrangements of blocks, that fit the data equally well provided that the horizontal dimension of those blocks is not larger than 100–200 km. A continuous field of velocity calculated from the GPS velocities by assuming that strain rates are homogeneous on the scale of ~120 km fits the observed velocities to better than 2–3 mm yr−1 (RMS), with systematic misfits, representing more localized strain, confined to a region approximately 100 × 100 km in size around the western Gulf of Corinth. This velocity field accounts for the major active tectonic features of Greece and the Aegean, including the widespread north-south extensional deformation and the distributed strike-slip deformation in the NE Aegean and western Greece. The T axes of earthquakes are aligned with the principal axes of elongation in the geodetic field, major active normal fault systems are perpendicular to those axes, and ~90% of the large earthquakes in this region during the past 120 years took place within the areas in which the geodetic strain rate exceeds 30 nanostrain yr−1. These observations suggest that the faulting within the upper crust of the Aegean region is driven by forces that are coherent over a scale that is significantly greater than 100 km. It is likely that those forces arise primarily from differences in gravitational potential energy within the lithosphere of the region.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofJournal of Geophysical Researchen
dc.relation.ispartofseries/115 (2010)en
dc.subjectGPSen
dc.subjectGreeceen
dc.titleA new velocity field for Greece: Implications for the kinematics and dynamics of the Aegeanen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB10403en
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneousen
dc.identifier.doi10.1029/2009JB007040en
dc.relation.referencesAltamimi, Z., X. Collilieux, J. Legrand, B. Garayt, and C. Boucher (2007), ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters, J. Geophys. Res., 112, B09401, doi:10.1029/2007JB004949.[AGU] Ambraseys, N., and J. Jackson (1990), Seismicity and associated strain of central Greece between 1890 and 1988, Geophys. J. Int., 101(3), 663–708, doi:10.1111/j.1365-246X.1990.tb05577.x.[CrossRef] Ambraseys, N., C. Melville, and R. D. Adams (1994), The Seismicity of Egypt, Arabia and the Red Sea: A Historical Review, doi:10.1017/CBO9780511524912, Cambridge Univ. Press, Cambridge, U. K.[CrossRef] Angelier, J., N. Lyberis, X. L. Pichon, E. Barrier, and P. Huchon (1982), The tectonic development of the Hellenic arc and the Sea of Crete: A synthesis, Tectonophysics, 86(1–3), 159–196, doi:10.1016/0040-1951(82)90066-X.[CrossRef] Avallone, A., P. Briole, and A. Agatza-Balodimou (2004), Analysis of eleven years of deformation measured by GPS in the Corinth Rift laboratory area, C. R. Acad. Sci. Geosci., 336, 301–311, doi:10.1016/j.crte.2003.12.007.[CrossRef] Baker, C., D. Hatzfeld, H. Lyon-Caen, E. Papadimitriou, and A. Rigo (1997), Earthquake mechanisms of the Adriatic Sea and western Greece: Implications for the oceanic subduction-continental collision transition, Geophys. J. Int., 131(3), 559–594, doi:10.1111/j.1365-246X.1997.tb06600.x.[CrossRef] Barka, A. (1996), Slip distribution along the North Anatolian fault associated with the larger earthquakes of the period 1939 to 1967, Bull. Seismol. Soc. Am., 86, 1238–1254. Bernard, P., et al. (1997), The Ms = 6.2, June 15, 1995 Aigion earthquake (Greece): Evidence for low angle normal faulting in the Corinth rift, J. Seismol., 1(2), 131–150, doi:10.1023/A:1009795618839.[CrossRef] Billiris, H., et al. (1991), Geodetic determination of tectonic deformation in central Greece from 1900 to 1988, Nature, 350, 124–129, doi:10.1038/350124a0.[CrossRef] Bird, P., and K. Piper (1980), Plane-stress finite-element models of tectonic flow in southern California, Phys. Earth Planet. Inter., 21, 158–175, doi:10.1016/0031-9201(80)90067-9.[CrossRef] Bourne, S., P. England, and B. Parsons (1998), The motion of crustal blocks driven by flow of the lower lithosphere and implications for slip rates of continental strike-slip faults, Nature, 391, 655–659, doi:10.1038/35556.[CrossRef] Briole, P., et al. (2000), Active deformation of the Corinth rift, Greece: Results from repeated Global Positioning System surveys between 1990 and 1995, J. Geophys. Res., 105(B11), 25,605–25,625, doi:10.1029/2000JB900148.[AGU] Clarke, P., et al. (1997), Geodetic estimate of seismic hazard in the Gulf of Korinthos, Geophys. Res. Lett., 24, 1303–1306, doi:10.1029/97GL01042.[AGU] Clarke, P. J., et al. (1998), Crustal strain in central Greece from repeated GPS measurements in the interval 1989–1997, Geophys. J. Int., 135(1), 195–214, doi:10.1046/j.1365-246X.1998.00633.x.[CrossRef] Collier, R., D. Pantosti, G. D’Addezio, P. D. Martini, E. Masana, and D. Sakellariou (1998), Paleoseismicity of the 1981 Corinth earthquake fault: Seismic contribution to extensional strain in central Greece and implications for seismic hazard, J. Geophys. Res., 103(B12), 30,001–30,019, doi:10.1029/98JB02643.[AGU] Davies, R., P. England, B. Parsons, H. Billiris, D. Paradissis, and G. Veis (1997), Geodetic strain of Greece in the interval 1892–1992, J. Geophys. Res., 102(B11), 24,571–24,588, doi:10.1029/97JB01644.[AGU] England, P. (2003), The alignment of earthquake T-axes with the principal axes of geodetic strain in the Aegean region, Turkish J. Earth Sci., 12, 47–53. England, P., and J. Jackson (1989), Active deformation of the continents, Annu. Rev. Earth Planet. Sci., 17, 197–226, doi:10.1146/annurev.ea.17.050189.001213.[CrossRef] England, P., and D. McKenzie (1982), A thin viscous sheet model for continental deformation, Geophys. J. R. Astron. Soc., 70, 295–321. England, P., and D. McKenzie (1983), Correction to a thin viscous sheet model for continental deformation, Geophys. J. R. Astron. Soc., 73, 523–532. England, P., G. Houseman, and L. Sonder (1985), Length scales for continental deformation in convergent, divergent and strike-slip environments: Analytical and approximate solutions for a thin viscous sheet model, J. Geophys. Res., 90(B5), 3551–3557, doi:10.1029/JB090iB05p03551.[AGU] Fletcher, R., and B. Hallet (1983), Unstable extension of the lithosphere: a mechanical model for basin-and-range structure, J. Geophys. Res., 88, 7457–7466, doi:10.1029/JB088iB09p07457.[AGU] Ganas, A., and T. Parsons (2009), Three-dimensional model of Hellenic Arc deformation and origin of the Cretan uplift, J. Geophys. Res., 114, B06404, doi:10.1029/2008JB005599.[AGU] Ganas, A., E. Serpelloni, G. Drakatos, M. Kolligri, I. Adamis, C. Tsimi, and E. Batsi (2009), The Mw 6.4 SW-Achaia (western Greece) earthquake of 8 June 2008: Seismological, field, GPS observations, and stress modeling, J. Earthquake Eng., 13(8), 1101–1124, doi:10.1080/13632460902933899. Goldsworthy, M., and J. A. Jackson (2000), Active normal fault evolution and interaction in Greece revealed by geomorphology and drainage patterns, J. Geol. Soc., 157, 967–981, doi:10.1144/jgs.157.5.967.[CrossRef] Goldsworthy, M., and J. Jackson (2001), Migration of activity within normal fault systems: Examples from the Quaternary of mainland Greece, J. Struct. Geol., 23(2–3), 489–506, doi:10.1016/S0191-8141(00)00121-8.[CrossRef] Goldsworthy, M., J. Jackson, and J. Haines (2002), The continuity of active fault systems in Greece, Geophys. J. Int., 148(3), 596–618, doi:10.1046/j.1365-246X.2002.01609.x.[CrossRef] Hatzfeld, D., et al. (1995), The Kozani–Grevena (Greece) earthquake of May 13, 1995, Ms = 6.6. Preliminary results of a field multidisciplinary survey, Seismol. Res. Lett., 66, 61–70. Hatzfeld, D., J. Martinod, G. Bastet, and P. Gautier (1997a), An analog experiment for the Aegean to describe the contribution of gravitational potential energy, J. Geophys. Res., 102(B1), 649–659, doi:10.1029/96JB02594.[AGU] Hatzfeld, D., et al. (1997b), The Kozani-Grevena (Greece) earthquake of 13 May 1995 revisited from a detailed seismological study, Bull. Seismol. Soc. Am., 87(2), 463–473. Hatzfeld, D., V. Karakostas, M. Ziazia, I. Kassaras, E. Papadimitriou, K. Makropoulos, N. Voulgaris, and C. Papaioannou (2000), Microsesmicity and faulting geometry in the Gulf of Corinth (Greece), Geophys. J. Int., 141, 438–456, doi:10.1046/j.1365-246x.2000.00092.x.[CrossRef] Haxby, W. F., and D. L. Turcotte (1978), On isostatic geoid anomalies, J. Geophys. Res., 83(B11), 5473–5478, doi:10.1029/JB083iB11p05473.[AGU] Heimpel, M., and P. Olson (1996), A seismodynamical model of lithosphere deformation: Development of continental and oceanic rift networks, J. Geophys. Res., 101(B7), 16,155–16,176, doi:10.1029/96JB00168.[AGU] Herring, T. A., R. W. King, and S. C. McClusky (2009), Introduction to GAMIT/GLOBK Release 10.35, Dep. of Earth, Atmos. and Planet, Sci., Mass. Inst. of Technol., Cambridge. (Available at http://www-gpsg.mit.edu/~simon/gtgk/index.htm) Hollenstein, C., M. D. Müller, A. Geiger, and H.-G. Kahle (2008), Crustal motion and deformation in Greece from a decade of GPS measurements, 1993–2003, Tectonophysics, 449(1–4), 17–40, doi:10.1016/j.tecto.2007.12.006.[CrossRef] Houseman, G., and P. England (1986), Finite strain calculations of continental deformation: 1. Method and general results for convergent zones, J. Geophys. Res., 91(B3), 3651–3663, doi:10.1029/JB091iB03p03651.[AGU] Jackson, J. (1999), Fault death: A perspective from actively deforming regions, J. Struct. Geol., 21, 1003–1010, doi:10.1016/S0191-8141(99)00013-9.[CrossRef] Jackson, J., and D. P. McKenzie (1988), The relationship between plate motions and seismic moment tensors and the rate of active deformation in the Mediterranean and Middle East, Geophys. J. R. Astron. Soc., 93, 45–73. Jackson, J., A. Haines, and W. Holt (1995), The accommodation of Arabia-Eurasia plate convergence in Iran, J. Geophys. Res., 100, 15,205–15,220, doi:10.1029/95JB01294.[AGU] Jackson, J. A., J. Gagnepain, G. Houseman, G. C. P. King, P. Papadimitriou, C. Soufleris, and J. Virieux (1982), Seismicity, normal faulting, and the geomorphological development of the Gulf of Corinth (Greece): The Corinth earthquakes of February and March 1981, Earth Planet. Sci. Lett., 57, 377–397, doi:10.1016/0012-821X(82)90158-3.[CrossRef] Kahle, H.-G., M. Cocard, Y. Peter, A. Geiger, R. Reilinger, A. Barka, and G. Veis (2000), GPS-derived strain field within the boundary zone of the Eurasian, African, and Arabian plates, J. Geophys. Res., 105(B10), 23,353–23,370, doi:10.1029/2000JB900238.[AGU] Kokkalas, S., S. Pavlides, I. Koukouvelas, A. Ganas, and L. Stamatopoulos (2007), Paleoseismicity of the Kaparelli fault (eastern Corinth Gulf): Evidence for earthquake recurrence and fault behaviour, Boll. Soc. Geol. Ital., 126, 387–395. Kostrov, B. (1974), Seismic moment and energy of earthquakes, and seismic flow of rock, Izv. Acad. Sci. USSR Phys. Solid Earth, Engl. Transl., 97, 23–44. Koukouvelas, I., and L. Stamatopoulos (2001), A palæoseismological and geoarchæological investigation of the Eliki fault, Gulf of Corinth, Greece, J. Struct. Archaeol., 113, 186–193. Le Pichon, X. (1982), Land-locked oceanic basins and continental collision; the eastern Mediterranean as a case example, in Mountain Building Processes, edited by K. Hsü , pp. 129–146, Academic, London. Le Pichon, X., N. Chamot-Rooke, S. Lallemant, R. Noomen, and G. Veis (1995), Geodetic determination of the kinematics of central Greece with respect to Europe: Implications for eastern Mediterranean tectonics, J. Geophys. Res., 100(B7), 12,675–12,690, doi:10.1029/95JB03170. Louvari, E., A. Kiratzi, and B. Papazachos (1999), The Cephalonia transform fault and its extension to western Lefkada island (Greece), Tectonophysics, 308(1–2), 223–236, doi:10.1016/S0040-1951(99)00078-5.[CrossRef] Mandelbrot, B. B., and J. W. Van Ness (1968), Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10(4), 422–437, doi:10.1137/1010093.[CrossRef] McClusky, S., et al. (2000), Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus, J. Geophys. Res., 105(B3), 5695–5719, doi:10.1029/1999JB900351. McKenzie, D. (1970), Plate tectonics of Mediterranean region, Nature, 226(5242), 239–243, doi:10.1038/226239a0.[CrossRef] McKenzie, D. (1972), Active tectonics of the Mediterranean region, Geophys. J. R. Astron. Soc., 30(2), 109–185. McKenzie, D. (1978a), Some remarks on the development of sedimentary basins, Earth Planet. Sci. Lett., 40(1), 25–32, doi:10.1016/0012-821X(78)90071-7.[CrossRef] McKenzie, D. (1978b), Active tectonics of the Alpine-Himalayan belt—Aegean Sea and surrounding regions, Geophys. J. R. Astron. Soc., 55(1), 217–254. McKenzie, D., and J. Jackson (1983), The relationship between strain rates, crustal thickening, paleomagnetism, finite strain and fault movements within a deforming zone, Earth Planet. Sci. Lett., 65, 182–202, doi:10.1016/0012-821X(83)90198-X.[CrossRef] McKenzie, D., and J. Jackson (1986), A block model of distributed deformation by faulting, J. Geol. Soc., 143, 349–353, doi:10.1144/gsjgs.143.2.0349.[CrossRef] Meade, B. J., and B. H. Hager (2005), Block models of crustal motion in southern California constrained by GPS measurements, J. Geophys. Res., 110, B03403, doi:10.1029/2004JB003209.[AGU] Meade, B. J., B. H. Hager, S. C. McClusky, R. E. Reilinger, S. Ergintav, O. Lenk, A. Barka, and H. Özener (2002), Estimates of seismic potential in the Marmara Sea region from block models of secular deformation constrained by Global Positioning System measurements, Bull. Seismol. Soc. Am., 92(1), 208–215, doi:10.1785/0120000837.[CrossRef] Meyer, B., R. Armijo, D. Massonnet, J. B. de Chabalier, C. Delacourt, J. C. Ruegg, J. Achache, P. Briole, and D. Papanastassiou (1996), The 1995 Grevena (northern Greece) earthquake: Fault model constrained with tectonic observations and SAR interferometry, Geophys. Res. Lett., 23(19), 2677–2680, doi:10.1029/96GL02389.[AGU] Molnar, P. (1988), Continental tectonics in the aftermath of plate tectonics, Nature, 335(6186), 131–137, doi:10.1038/335131a0.[CrossRef] Molnar, P., and H. Lyon-Caen (1988), Some simple physical aspects of the support, structure, and evolution of mountain belts, in Processes in Continental Lithospheric Deformation, edited by S. P. Clark Jr., B. C. Burchfiel , and J. Suppe , Spec. Pap. Geol. Soc. Am., 218, 179–207. Molnar, P., T. Fitch, and F. Wu (1973), Fault plane solutions of shallow earthquakes and contemporary tectonics in Asia, Earth Planet. Sci. Lett., 19(2), 101–112, doi:10.1016/0012-821X(73)90104-0.[CrossRef] Nyst, M., and W. Thatcher (2004), New constraints on the active tectonic deformation of the Aegean, J. Geophys. Res., 109, B11406, doi:10.1029/2003JB002830.[AGU] Ori, G. (1989), Geologic history of the extensional basin of the gulf of Corinth (Miocene–Pliestocene), Geology, 17(10), 918–921, doi:10.1130/0091-7613(1989)017<0918:GHOTEB>2.3.CO;2.[CrossRef] Pantosti, D., P. D. Martini, D. Papanastassiou, F. Lemeille, N. Palyvos, and G. Stavrakakis (2004), Paleoseismological trenching across the Atalanti fault (central Greece): Evidence for the ancestors of the 1894 earthquake during the middle ages and roman times, Bull. Seismol. Soc. Am., 94(2), 531–549, doi:10.1785/0120020207.[CrossRef] Reilinger, R., et al. (2006), GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions, J. Geophys. Res., 111, B05411, doi:10.1029/2005JB004051.[AGU] Reilinger, R., S. McClusky, D. Paradissis, S. Ergintav, and P. Vernant (2010), Geodetic constraints on the tectonic evolution of the Aegean region and strain accumulation along the Hellenic subduction zone, Tectonophysics, 488, 22–30, doi:10.1016/j.tecto.2009.05.027.[CrossRef] Resor, P. G., D. D. Pollard, T. J. Wright, and G. C. Beroza (2005), Integrating high-precision aftershock locations and geodetic observations to model coseismic deformation associated with the 1995 Kozani-Grevena earthquake, Greece, J. Geophys. Res., 110, B09402, doi:10.1029/2004JB003263.[AGU] Rohais, S., S. Joannin, J.-P. Colin, J.-P. Suc, F. Guillocheau, and R. Eschard (2007), Age and environmental evolution of the syn-rift fill of the southern coast of the Gulf of Corinth (Akrata-Derveni region, Greece), Bull. Soc. Geol. Fr., 178, 231–243, doi:10.2113/gssgfbull.178.3.231.[CrossRef] Savage, J., and R. Burford (1973), Geodetic determination of relative plate motion in central California, J. Geophys. Res., 78, 832–845, doi:10.1029/JB078i005p00832.[AGU] Shaw, B., and J. Jackson (2010), Earthquake mechanisms and active tectonics of the Hellenic subduction zone, Geophys. J. Int., 181(2), 966–984, doi:10.1111/j.1365-246X.2010.04551.x. Shaw, B., et al. (2008), Eastern Mediterranean tectonics and tsunami hazard inferred from the AD 365 earthquake, Nat. Geosci., 1(4), 268–276, doi:10.1038/ngeo151.[CrossRef] Shen, Z., D. Jackson, and B. Ge (1996), Crustal deformation across and beyond the Los Angeles basin from geodetic measurements, J. Geophys. Res., 101(B12), 27,957–27,980, doi:10.1029/96JB02544.[AGU] Sonder, L. J., and P. C. England (1989), Effects of a temperature–dependent rheology on large-scale continental extension, J. Geophys. Res., 94(B6), 7603–7619, doi:10.1029/JB094iB06p07603.[AGU] Taymaz, T., J. Jackson, and D. McKenzie (1991), Active tectonics of the north and central Aegean Sea, Geophys. J. Int., 106(2), 433–490, doi:10.1111/j.1365-246X.1991.tb03906.x.[CrossRef] Veis, G., H. Billiris, B. Nakos, and D. Paradissis (1992), Tectonic strain in Greece from geodetic measurements, C. R. Acad. Sci. Athens, 67, 129–166. Vilotte, J., M. Daignières, and R. Madariaga (1982), Numerical modeling of intraplate deformation: Simple mechanical models of continental collision, J. Geophys. Res., 87(B13), 10,709–10,728, doi:10.1029/JB087iB13p10709.[AGU] Wdowinski, S., Y. Bock, J. Zhang, P. Fang, and J. Genrich (1997), Southern California Permanent GPS Geodetic Array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake, J. Geophys. Res., 102(B8), 18,057–18,070, doi:10.1029/97JB01378.[AGU] Wessel, P., and W. H. F. Smith (1998), New, improved version of generic mapping tools released, Eos Trans. AGU, 79, 579, doi:10.1029/98EO00426.[AGU] Williams, S. D. P. (2008), CATS: GPS coordinate time series analysis software, GPS Solut., 12(2), 147–153, doi:10.1007/s10291-007-0086-4.[CrossRef] Zhang, J., Y. Bock, H. Johnson, P. Fang, S. Williams, J. Genrich, S. Wdowinski, and J. Behr (1997), Southern California Permanent GPS Geodetic Array: Error analysis of daily position estimates and site velocities, J. Geophys. Res., 102(B8), 18,035–18,055, doi:10.1029/97JB01380.[AGU] Zuber, M., and E. Parmentier (1986), Lithospheric necking—A dynamic model for rift morphology, Earth Planet. Sci. Lett., 77(3–4), 373–383, doi:10.1016/0012-821X(86)90147-0.en
dc.description.obiettivoSpecifico3.2. Tettonica attivaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorFloyd, M. A.en
dc.contributor.authorBilliris, H.en
dc.contributor.authorParadissis, D.en
dc.contributor.authorVeis, G.en
dc.contributor.authorAvallone, A.en
dc.contributor.authorBriole, P.en
dc.contributor.authorMcClusky, S.en
dc.contributor.authorNocquet, J.-M.en
dc.contributor.authorPalamartchouk, K.en
dc.contributor.authorParsons, B. E.en
dc.contributor.authorEngland, P. C.en
dc.contributor.departmentDepartment of Earth Sciences, University of California, California, USAen
dc.contributor.departmentHigher Geodesy Laboratory, National Technical University, Athens, Greeceen
dc.contributor.departmentHigher Geodesy Laboratory, National Technical University, Athens, Greeceen
dc.contributor.departmentHigher Geodesy Laboratory, National Technical University, Athens, Greeceen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentEcole Normale Supérieure, Laboratoire de Géologie, Paris, Franceen
dc.contributor.departmentDepartment of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USAen
dc.contributor.departmentCNRS–GéoAzur, University of Nice, Valbonne, Franceen
dc.contributor.departmentDepartment of Earth Sciences, University of Oxford, Oxford, UKen
dc.contributor.departmentDepartment of Earth Sciences, University of Oxford, Oxford, UKen
dc.contributor.departmentDepartment of Earth Sciences, University of Oxford, Oxford, UKen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.orcid0000-0002-0264-2897-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2009JB007040.pdfMain article6.03 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

116
checked on Feb 10, 2021

Page view(s) 20

398
checked on Apr 24, 2024

Download(s)

44
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric