Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6115
DC FieldValueLanguage
dc.contributor.authorallMcCausland, W. A.; U.S. Geological Survey, Cascades Volcano Observatory, Vancouver, Washington, USA.en
dc.contributor.authorallCreager, K. C.; Department of Earth and Space Sciences, University of Washington Seattle, Washington, USA.en
dc.contributor.authorallLa Rocca, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallMalone, S. D.; Department of Earth and Space Sciences, University of Washington Seattle, Washington, USA.en
dc.date.accessioned2010-09-13T10:58:01Zen
dc.date.available2010-09-13T10:58:01Zen
dc.date.issued2010en
dc.identifier.urihttp://hdl.handle.net/2122/6115en
dc.descriptionAn edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union.en
dc.description.abstractTectonic tremor has been recorded at many subduction zones, including the Nankai, Cascadia, Mexican, and Alaskan subduction zones. This study, the first to use small aperture seismic arrays to track tremor, deployed three small aperture seismic arrays along the Cascadia subduction zone during a tremor and slow slip episode in July 2004. The tremor was active during virtually all (up to 99%) minutes of the analyzed tremor episode using 5 min sample windows. Individual wave phases were tracked across the arrays and used to derive slowness vectors. These were compared with slowness vectors computed from a standard layered Earth model to derive tremor locations. Locations were stable within a volume roughly 250 km2 in epicenter and 20 km in depth for hours to days before moving to a new volume. The migration between volumes was not smooth, and the movement of the sources within the volume followed no specific pattern. Overall migration speeds along the strike of the subduction zone were between 5 and 15 km/d; smaller scale migration speeds between volumes reached speeds up to 2 km/min. Uncertainties in the best locations were 5 km in epicenter and 10 km in depth. For this data set and processing methodology, tremor does not locate predominately on the primary subduction interface. Our favored model for the generation of tectonic tremor signals is that the tremor is triggered by stress and fluid pressure changes caused by slow slip and is composed, at least in part, of low‐frequency earthquakes broadly distributed in locationen
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofJournal of geophysical researchen
dc.relation.ispartofseries/115(2010)en
dc.subjecttremor migrationen
dc.subjectCascadia 2004en
dc.titleShort‐term and long‐term tremor migration patterns of the Cascadia 2004 tremor and slow slip episode using small aperture seismic arraysen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB00A24en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamicsen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoringen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysisen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonicsen
dc.identifier.doi10.1029/2008JB006063en
dc.relation.referencesAster, R., B. Borchers, and C. Thurber (2004), Parameter Estimation and Inverse Problems, Elsevier Sci. and Technol., Burlington, Mass. Bostock, M. G., R. D. Hyndman, S. Rondenay, and S. M. Peacock (2002), An inverted continental Moho and serpentinization of the forearc mantle, Nature, 417, 536–538, doi:10.1038/417536a. Brocher, T. M., T. Parsons, A. M. Trehu, C. M. Snelson, and M. A. Fisher (2003), Seismic evidence for widespread serpentinized forearc upper mantle along the Cascadia margin, Geology, 31(3), 267–270, doi:10.1130/0091-7613(2003)031<0267:SEFWSF>2.0.CO;2. Brooks, B., J. H. Fostera, M. Bevis, L. N. Frazera, C. J. Wolfe, and M. B. Behn (2006), Periodic slow earthquakes on the flank of Kilauea volcano, Hawaii, Earth Planet. Sci. Lett., 246, 207–216, doi:10.1016/j. epsl.2006.03.035. Christensen, N. I. (2004), Serpentinites, peridotites, and seismology, in Serpentine and Serpentinites: Mineralogy, Petrology, Geochemistry, Ecology, Geophysics and Tectonics, edited by W. G. Ernst, pp. 503–524, Bellwether, Columbia, Md. Crosson, R. S. (1976), Crustal structure modeling of earthquake data 1. Simultaneous least squares estimation of hypocenter and velocity parameters, J. Geophys. Res., 81(17), 3036–3046, doi:10.1029/ JB081i017p03036. Crotwell, H. P., T. J. Owens, and J. Ritsema (1999), The TauP Toolkit: Flexible seismic travel‐time and ray‐path utilities, Seismol. Res. Lett., 70, 154–160. Douglas, A., J. Beavan, L. Wallace, and J. Townend (2005), Slow slip on the northern Hikurangi subduction interface, New Zealand, Geophys. Res. Lett., 32, L16305, doi:10.1029/2005GL023607. Dragert, H., K. Wang, and T. S. James (2001), A silent slip event on the deeper Cascadia Subduction Interface, Science, 292, 1525–1528, doi:10.1126/science.1060152. Evans, B. (2004), The serpentinite multi‐system revisited: Chrysotile is metastable, in Serpentine and Serpentinites: Mineralogy, Petrology, Geochemistry, Ecology, Geophysics and Tectonics, edited by W. G. Ernst, pp. 5–32, Bellwether, Columbia, Md. Hirose, H., and K. Obara (2005), Repeating short‐ and long‐term slow slip events with deep tremor activity around the Bungo channel region, southwest Japan, Earth Planets Space, 57, 961–972. Hyndman, R., and S. M. Peacock (2003), Serpentinization of the forearc mantle, Earth Planet. Sci. Lett., 212, 417–432, doi:10.1016/S0012- 821X(03)00263-2. Ishii, M., P. M. Shearer, H. Houston, and J. E. Vidale (2005), Extent, duration and speed of the 2004 Sumatra‐Andaman earthquake imaged by the Hi‐Net array, Nature, 435, 933–936, doi:10.1038/nature03675. Ito, Y., and K. Obara (2006a), Dynamic deformation of the accretionary prism excites very low frequency earthquakes, Geophys. Res. Lett., 33, L02311, doi:10.1029/2005GL025270. Ito, Y., and K. Obara (2006b), Very low frequency earthquakes within accretionary prisms are very low stress‐drop earthquakes, Geophys. Res. Lett., 33, L09302, doi:10.1029/2006GL025883. Ito, Y., K. Obara, K. Shiomi, S. Sekine, and H. Hirose (2007), Slow earthquakes coincident with episodic tremors and slow slip event, Science, 315(5811), 503, doi:10.1126/science.1134454. Kamaya, N., A. Katsumata, and Y. Ishigaki (2004), Low‐frequency tremor and slow slip around the probably source region of the Tokai earthquake—A new indicator for the Tokai earthquake prediction provided by unified seismic networks in Japan, U.S. Geol. Surv. Open File Rep., 2005‐1131, 47 pp. Kao, H., and S. Shan (2004), The source‐scanning algorithm: Mapping the distribution of seismic sources in time and space, Geophys. J. Int., 157(2), 589–594, doi:10.1111/j.1365-246X.2004.02276.x. Kao, H., S. Shan, H. Dragert, G. Rogers, J. F. Cassidy, K. Wang, T. S. James, and K. Ramachandran (2005), A wide depth distribution of seismic tremors along the northern Cascadia margin, Nature, 436(7052), 841–844, doi:10.1038/nature03903. Kao, H., S. Shan, H. Dragert, G. Rogers, J. F. Cassidy, K. Wang, T. S. James, and K. Ramachandran (2006), Spatial‐temporal patterns of seismic tremors in northern Cascadia, J. Geophys. Res., 111, B03309, doi:10.1029/2005JB003727. Kao, H., S. ‐J. Shan, G. Rogers, and H. Dragert (2007), Migration characteristics of seismic tremors in the northern Cascadia margin, Geophys. Res. Lett., 34, L03304, doi:10.1029/2006GL028430. Kurtz, R. D., J. M. DeLaurier, and J. C. Gupta (1986), A magnetotelluric sounding across Vancouver Island detects the subducting Juan de Fuca plate, Nature, 321, 596–599, doi:10.1038/321596a0. La Rocca, M., W. McCausland, D. Galluzo, S. Malone, G. Saccorotti, and E. Del Pezzo (2005), Array measurements of deep tremor signals in the Cascadia subduction zone, Geophys. Res. Lett., 32, L21319, doi:10.1029/ 2005GL023974. La Rocca, M., D. Galluzzo, S. Malone, W. McCausland, G. Saccorotti, and E. Del Pezzo (2008), Testing small‐aperture array analysis on welllocated earthquakes, and application to the location of deep tremor, Bull. Seismol. Soc. Am., 98, 620–635, doi:10.1785/0120060185. La Rocca, M., K. C. Creager, D. Galluzzo, S. Malone, J. E. Vidale, J. R. Sweet, and A. G. Wech (2009), Cascadia tremor located near plate interface constrained by S minus P wave times, Science, 323, 620–623, doi:10.1126/science.1167112. La Rocca, M., D. Galluzzo, S. Malone, W. McCausland, and E. Del Pezzo (2010), Array analysis and precise source location of deep tremor in Cascadia, J. Geophys. Res., 115, B00A20, doi:10.1029/2008JB006041. Ma, S., S. Custódio, R. J. Archuleta, and P. Liu (2008), Dynamic modeling of the 2004 Mw6.0 Parkfield, California, earthquake, J. Geophys. Res., 113, B02301, doi:10.1029/2007JB005216. Matsumoto, T., T. Kawabata, J. Matsuda, K. Yamamoto, and K. Mimura (2003), 3He/4He ratios in well gases in the Kinki district, SW Japan: Surface appearance of slab‐derived fluids in a non‐volcanic area in Kii Peninsula, Earth Planet. Sci. Lett., 216(1–2), 221–230, doi:10.1016/ S0012-821X(03)00479-5. McCausland, W. (2006), Tracking subduction tremor in Cascadia using regional network and small aperture seismic array data, Ph.D. dissertation, Univ. of Wash., Seattle. McCausland, W., S. Malone, and D. Johnson (2005), Temporal and spatial occurrence of deep non‐volcanic tremor: From Washington to northern California, Geophys. Res. Lett., 32, L24311, doi:10.1029/ 2005GL024349. Medema, G. F. (2006), Juan de Fuca subducting plate geometry and intraslab seismicity, doctoral dissertation, Univ. of Wash., Seattle. Miller, M., T. Melbourne, D. J. Johnson, and W. Q. Sumner (2002), Periodic slow earthquakes from the Cascadia subduction zone, Science, 295, 2423, doi:10.1126/science.1071193. Nadeau, R. M., and D. Dolenc (2005), Nonvolcanic tremors deep beneath the San Andreas fault, Science, 307, 389, doi:10.1126/science.1107142. Nicholson, T., M. Bostock, and J. F. Cassidy (2005), New constraints on subduction zone structure in northern Cascadia, Geophys. J. Int., 161, 849–859, doi:10.1111/j.1365-246X.2005.02605.x. Obara, K. (2002), Non‐volcanic deep tremor associated with subduction in southwest Japan, Science, 296, 1679–1681, doi:10.1126/science. 1070378. Peacock, S. M. (1993), Large‐scale hydration of the lithosphere above subducting slabs, Chem. Geol., 108, 49–59, doi:10.1016/0009-2541(93) 90317-C. Preston, L., K. C. Creager, R. S. Crosson, T. M. Brocher, and A. M. Trehu (2003), Intraslab earthquakes: Dehydration of the Cascadia slab, Science, 302, 1197–1200, doi:10.1126/science.1090751. Rogers, G., and H. Dragert (2003), Episodic tremor and slip on the Cascadia subduction zone: The chatter of silent slip, Science, 300, 1942–1943, doi:10.1126/science.1084783. Schwartz, S. Y., and J. M. Rokosky (2007), Slow slip events and seismic tremor at circum‐Pacific subduction zones, Rev. Geophys., 45, RG3004, doi:10.1029/2006RG000208. Segall, P., E. K. Desmarais, D. Shelly, A. Miklius, and P. Cervelli (2006), Earthquakes triggered by silent slip events on Kilauea volcano, Hawaii, Nature, 442, 71–74, doi:10.1038/nature04938. Seno, T., D. Zhao, Y. Kobayashi, and M. Nakamura (2001), Dehydration of serpentinized slab mantle: Seismic evidence from southwest Japan, Earth Planets Space, 53, 861–871. Shelly, D. R., G. C. Beroza, S. Ide, and S. Nakamula (2006), Low‐ Frequency Earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip, Nature, 442, 188–191, doi:10.1038/nature04931. Shelly, D. R., G. C. Beroza, and S. Ide (2007), Complex evolution of transient slip derived from precise tremor locations in western Shikoku, Japan, Geochem. Geophys. Geosyst., 8, Q10014, doi:10.1029/2007GC001640. Soyer, W., and M. Unsworth (2006), Deep electrical structure of the northern Cascadia (British Columbia, Canada) subduction zone: Implications for the distribution of fluids, Geology, 34, 53–56, doi:10.1130/G21951.1. Szeliga, W., T. I. Melbourne, M. M. Miller, and V. M. Santillan (2004), Southern Cascadia episodic slow earthquakes, Geophys. Res. Lett., 31, L16602, doi:10.1029/2004GL020824. Umeda, K., Y. Ogawab, K. Asamoria, and T. Oikawaa (2006), Aqueous fluids derived from a subducting slab: Observed high 3He emanation and conductive anomaly in a non‐volcanic region, Kii Peninsula southwest Japan, J. Volcanol. Geotherm. Res., 149, 47–61, doi:10.1016/j. jvolgeores.2005.06.005. Vidale, J. E., and P. M. Shearer (2006), A survey of 71 earthquake bursts across southern California: Exploring the role of pore fluid pressure fluctuations and aseismic slip as drivers, J. Geophys. Res., 111, B05312, doi:10.1029/2005JB004034. Wallace, L. M., and J. Beavan (2006), A large slow slip event on the central Hikurangi subduction interface beneath the Manawatu region, North Island, New Zealand, Geophys. Res. Lett., 33, L11301, doi:10.1029/ 2006GL026009. Wech, A. G., and K. C. Creager (2007), Cascadia tremor polarization evidence for plate interface slip, Geophys. Res. Lett., 34, L22306, doi:10.1029/2007GL031167.en
dc.description.obiettivoSpecifico3.2. Tettonica attivaen
dc.description.obiettivoSpecifico3.3. Geodinamica e struttura dell'interno della Terraen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorMcCausland, W. A.en
dc.contributor.authorCreager, K. C.en
dc.contributor.authorLa Rocca, M.en
dc.contributor.authorMalone, S. D.en
dc.contributor.departmentU.S. Geological Survey, Cascades Volcano Observatory, Vancouver, Washington, USA.en
dc.contributor.departmentDepartment of Earth and Space Sciences, University of Washington Seattle, Washington, USA.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentDepartment of Earth and Space Sciences, University of Washington Seattle, Washington, USA.en
item.grantfulltextrestricted-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypearticle-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.deptU.S. Geological Survey, Cascades Volcano Observatory, Vancouver, Washington, USA.-
crisitem.author.deptDepartment of Earth and Space Science, University of Washington, Box 351310, Seattle, WA 98195, USA.-
crisitem.author.deptUniverista della Calabria, Italy-
crisitem.author.deptDepartment of Earth and Space Sciences, University of Washington Seattle, Washington, USA.-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
McCausland_etal_JGR2010[1].pdf6.8 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

8
checked on Feb 7, 2021

Page view(s)

90
checked on Aug 9, 2022

Download(s)

22
checked on Aug 9, 2022

Google ScholarTM

Check

Altmetric