Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6110
DC FieldValueLanguage
dc.contributor.authorallSettimi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallSeverini, S.; Centro Interforze Studi Applicazioni Militari (CISAM) – Via della Bigattiera 10, 56122 San Piero a Grado, Pisa, Italyen
dc.date.accessioned2010-09-13T07:30:29Zen
dc.date.available2010-09-13T07:30:29Zen
dc.date.issued2010-08-16en
dc.identifier.urihttp://hdl.handle.net/2122/6110en
dc.descriptionAuthor Posting. (c) 'Taylor&Francis', 2010. This is the author's version of the work. It is posted here by permission of 'Taylor&Francis' for personal use, not for redistributionen
dc.description.abstractThe present paper proposes a comparison between the extinction theorem and the Sturm–Liouville theory approaches for calculating the electromagnetic (e.m.) field inside an optical cavity. We discuss for the first time to the best of our knowledge, in the framework of classical electrodynamics, a simple link between the quasi normal modes (QNMs) and the natural modes (NMs) for one-dimensional (1D), two-sided, open cavities. The QNM eigenfrequencies and eigenfunctions are calculated for a linear Fabry–Pe´rot (FP) cavity. The first-order Born approximation is applied to the same cavity in order to compare the first-order Born approximated and the actual QNM eigenfunctions of the cavity. We demonstrate that the first-order Born approximation for an FP cavity introduces symmetry breaking: in fact, each Born approximated QNM eigenfunction produces values below or above the actual QNM eigenfunction value on the terminal surfaces of the same cavity. Consequently, the two error-functions for an approximated QNM are not equal in proximity to the two terminal surfaces of the cavity.en
dc.language.isoEnglishen
dc.publisher.nameTaylor & Francisen
dc.relation.ispartofJournal of Modern Opticsen
dc.relation.ispartofseries16/ 57(2010)en
dc.relation.isversionofhttp://lanl.arxiv.org/abs/0906.0794en
dc.subjectElectromagnetic opticsen
dc.subjectMathematical methods in physicsen
dc.subjectModesen
dc.subjectResonancesen
dc.subjectFabry-Peroten
dc.titleLinking Quasi-Normal and Natural Modes of an open cavityen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1513-1525en
dc.identifier.URLhttp://www.informaworld.com/smpp/content~content=a925824021~db=all~jumptype=rssen
dc.subject.INGV05. General::05.09. Miscellaneous::05.09.99. General or miscellaneousen
dc.identifier.doi10.1080/09500340.2010.504917en
dc.relation.references[1] Pattanayak, D.N.; Wolf, E. Phys. Rev. D 1976, 13, 2287–2290. [2] Wolf, E.; Pattanayak, D.N. Symposia Mathematica; Academic: New York, 1976; Vol. 18. [3] Kapur, P.L.; Peierls, R. Proc. R. Soc. Lond. A 1938, 166, 277–295. [4] Siegert, A.J.F. Phys. Rev. 1939, 56, 750–752. [5] Humblet, J. Me´m. Soc. Roy. Sci. Lie`ge (4) 1952, 12, 114. [6] Humblet, J.; Rosenfeld, L. Nucl. Phys. A 1961, 26, 529–578. [7] Mittleman, M.H. Phys. Rev. 1969, 182, 128–132. [8] Hoenders, B.J. On the Decomposition of the Electromagnetic Field into its Natural Modes. In Proceedings of the 4th International Conference on Coherence and Quantum Optics: Mandel, L., Wolf, E., Eds.; Plenum Press: New York, 1978; pp 221–233. [9] Hoenders, B.J.; Ferwerda, H.A. Optik 1974, 40, 14–17. [10] Hoenders, B.J. J. Mat. Phys. 1978, 11, 1815–1832. [11] Hoenders, B.J. J. Mat. Phys. 1979, 20, 329–335. [12] Hoenders, B.J.; Bertolotti, M. Proc. SPIE Int. Soc. Opt. Eng. 2006, 6182, 61821F–6182G. [13] Inoue, K.; Ohtaka, K. Photonic Crystals: Physics, Fabrication, and Applications; Springer-Verlag: Berlin, 2004. [14] Ching, E.S.C.; Leung, P.T.; Young, K. Optical Processes in Microcavities – The Role of Quasi-Normal Modes. In Optical Processes in Microcavities: Chang, R.K., Campillo, A. J., Eds.; World Scientific: Singapore, 1996; pp 1–75. [15] Leung, P.T.; Liu, S.Y.; Young, K. Phys. Rev. A 1994, 49, 3057–3067. [16] Leung, P.T.; Tong, S.S.; Young, K. J. Phys. A: Math. Gen. 1997, 30, 2139–2151. [17] Leung, P.T.; Tong, S.S.; Young, K. J. Phys. A: Math. Gen. 1997, 30, 2153–2162. [18] Ching, E.S.C.; Leung, P.T.; Maassen van den Brink, A.; Suen, W.M.; Tong, S.S.; Young, K. Rev. Mod. Phys. 1998, 70, 1545–1554. [19] Leung, P.T.; Suen, W.M.; Sun, C.P.; Young, K. Phys. Rev. E 1998, 57, 6101–6104. [20] Maassen van den Brink, A.; Young, K. J. Phys. A: Math. Gen. 2001, 34, 2607–2624. [21] Severini, S.; Settimi, A.; Mattiucci, N.; Sibilia, C.; Centini, M.; D’Aguanno, G.; Bertolotti, M.; Scalora, M.; Bloemer, M.J.; Bowden, C.M. Quasi Normal Modes description of waves in 1D Photonic Crystals. In Photonics, Devices, and Systems II of SPIE Proceedings: Hrabovsky, M., Senderakova, D., Tomanek, P., Eds.; SPIE: Bellingham, WA, 2003; Vol. 5036, pp 392–401. [22] Settimi, A.; Severini, S.; Mattiucci, N.; Sibilia, C.; Centini, M.; D’Aguanno, G.; Bertolotti, M.; Scalora, M.; Bloemer, M.; Bowden, C.M. Phys. Rev. E 2003, 68, 026614. [23] Severini, S.; Settimi, A.; Sibilia, C.; Bertolotti, M.; Napoli, A.; Messina, A. Acta Phys. Hung. B 2005, 23, 135–142. [24] Settimi, A.; Severini, S.; Hoenders, B.J. J. Opt. Soc. Am. B 2009, 26, 876–891. [25] Bertolotti, M. Linear One-dimensional Resonant Cavities. In Microresonators as Building Blocks for VLSI Photonics of AIP Conference Proceedings: Michelotti, F., Driessen, A., Bertolotti, M., Eds.; AIP: New York, 2004; Vol. 709, pp 19–47. [26] Settimi, A.; Severini, S. Linking Quasi-normal and Natural Modes of an Open Cavity, 2009, arXiv: 0906.0794v3 [physics.optics] e-Print archive. http://lanl.arxiv.org/abs/0906.0794 (submitted Jun 3, 2009). [27] Carrier, G.F.; Krook, M.; Pearson, C.E. Functions of a Complex Variable – Theory and technique; McGraw-Hill: New York, 1983. [28] Born, M.; Wolf, E. Principles of Optics; Macmillan: New York, 1964. [29] Feynman, R. Quantum Electrodynamics; Benjamin: New York, 1962. [30] Weinberg, S. The Quantum Theory of Fields; Cambridge University Press: USA, 1996.en
dc.description.obiettivoSpecifico5.8. TTC - Biblioteche ed editoriaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextpartially_openen
dc.contributor.authorSettimi, A.en
dc.contributor.authorSeverini, S.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentCentro Interforze Studi Applicazioni Militari (CISAM) – Via della Bigattiera 10, 56122 San Piero a Grado, Pisa, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextembargo_restricted_20800101-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptCentro Interforze Studi Applicazioni Militari (CISAM), Via della Bigattiera lato monte 10, 56122 San Piero a Grado, Pisa, Italia-
crisitem.author.orcid0000-0002-9487-2242-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
J.Mod.Opt.pdf287.61 kBAdobe PDF
Linking the Quasi-Normal and natural Modes of an open cavity (ArXiv).pdf1.62 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 50

4
checked on Feb 10, 2021

Page view(s) 50

238
checked on Apr 20, 2024

Download(s) 50

168
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric