Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6108
DC FieldValueLanguage
dc.contributor.authorallSettimi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia-
dc.contributor.authorallZirizzotti, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia-
dc.contributor.authorallBaskaradas, J. A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia-
dc.contributor.authorallBianchi, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia-
dc.date.accessioned2010-09-10T15:19:57Z-
dc.date.available2010-09-10T15:19:57Z-
dc.date.issued2010-
dc.identifier.urihttp://hdl.handle.net/2122/6108-
dc.description.abstractIn this paper, we propose a discussion of the theoretical design and move towards the development and engineering of an induction probe for electrical spectroscopy which performs simultaneous and non invasive measurements on the electrical RESistivity ρ and dielectric PERmittivity εr of non-saturated terrestrial ground and concretes (RESPER probe). In order to design a RESPER which measures ρ and εr with inaccuracies below a prefixed limit (10%) in a band of low frequencies (LF) (B=100kHz), the probe should be connected to an appropriate analogical digital converter (ADC), which samples in uniform or in phase and quadrature (IQ) mode, otherwise to a lock-in amplifier. The paper develops only a suitable number of numerical simulations, using Mathcad, which provide the working frequencies, the electrode-electrode distance and the optimization of the height above ground minimizing the inaccuracies of the RESPER, in galvanic or capacitive contact with terrestrial soils or concretes, of low or high resistivity. As findings of simulations, we underline that the performances of a lock-in amplifier are preferable even when compared to an IQ sampling ADC with high resolution, under the same operating conditions. As consequences in the practical applications: if the probe is connected to a data acquisition system (DAS) as an uniform or an IQ sampler, then it could be commercialized for companies of building and road paving, being employable for analyzing “in situ” only concretes; otherwise, if the DAS is a lock-in amplifier, the marketing would be for companies of geophysical prospecting, involved to analyze “in situ” even terrestrial soils.en_US
dc.description.sponsorshipIstituto Nazionale di Geofisica e Vulcanologia (INGV), via di Vigna Murata 605, I-00143 Rome, Italy.en_US
dc.language.isoengen_US
dc.relation.ispartofseriesQuaderni di Geofisicaen_US
dc.relation.ispartofseries79en_US
dc.subjectInstrumentation and techniques of general interesten_US
dc.subjectMethodsen_US
dc.subjectMathematical geophysicsen_US
dc.subjectComputational geophysicsen_US
dc.subjectExploration geophysicsen_US
dc.titleDesign of an induction probe for simultaneous measurements of permittivity and resistivityen_US
dc.typereport-
dc.description.statusPublisheden_US
dc.type.QualityControlPeer-revieweden_US
dc.identifier.URLhttp://lanl.arxiv.org/abs/0908.0651en_US
dc.subject.INGV05. General::05.04. Instrumentation and techniques of general interest::05.04.99. General or miscellaneousen_US
dc.relation.referencesAl-Qadi I. L., Hazim O. A., Su W. and Riad S. M (1995): Dielectric properties of Portland cement concrete at low radio frequencies, J. Mater. Civil. Eng., 7, 192-198. Auty R.P. and Cole R.H. (1952): Dielectric properties of ice and solid, J. Chem. Phys., 20, 1309-1314. Chelidze T.L. and Gueguen Y. (1999): Electrical spectroscopy of porous rocks: a review-I, Theoretical models, Geophys. J. Int., 137, 1-15. Chelidze T.L., Gueguen Y. and Ruffet C. (1999): Electrical spectroscopy of porous rocks: a review-II, Experimental results and interpretation, Geophys. J. Int., 137, 16-34. Debye P. (1929): Polar Molecules (Leipzig Press, Germany). Declerk P. (1995): Bibliographic study of georadar principles, applications, advantages, and inconvenience, NDT & E International, 28, 390-442 (in French, English abstract). Del Vento D. and Vannaroni G. (2005): Evaluation of a mutual impedance probe to search for water ice in the Martian shallow subsoil, Rev. Sci. Instrum., 76, 084504 (1-8). Edwards R. J. (1998): Typical Soil Characteristics of Various Terrains, http://www.smeter.net/grounds/soil-electrical-resistance.php. Frolich H. (1990): Theory of Dielectrics (Oxford University Press, Oxford). Grard R. (1990): A quadrupolar array for measuring the complex permittivity of the ground: application to earth prospection and planetary exploration, Meas. Sci. Technol., 1, 295-301. Grard R. (1990): A quadrupole system for measuring in situ the complex permittvity of materials: application to penetrators and landers for planetary exploration, Meas. Sci. Technol., 1, 801-806. Grard R. and Tabbagh A. (1991): A mobile four electrode array and its application to the electrical survey of planetary grounds at shallow depth, J. Geophys. Res., 96, 4117-4123. Jankovic D. and Öhman J. (2001): Extraction of in-phase and quadrature components by IF-sampling, Department of Signals and Systems, Cahlmers University of Technology, Goteborg (carried out at Ericson Microwave System AB). Knight R. J. and Nur A. (1987): The dielectric constant of sandstone, 60 kHz to 4 MHz, Geophysics, 52, 644-654. Laurents S., Balayssac J. P., Rhazi J., Klysz G. and Arliguie G. (2005): Non-destructive evaluation of concrete moisture by GPR: experimental study and direct modeling, Materials and Structures (M&S), 38, 827-832 (2005). Mojid M. A., Wyseure G. C. L. and Rose D. A. (2003): Electrical conductivity problems associated with time-domain reflectometry (TDR) measurement in geotechnical engineering, Geotechnical and Geological Engineering, 21, 243-258. Mojid M. A. and Cho H. (2004): Evaluation of the time-domain reflectometry (TDR)-measured composite dielectric constant of root-mixed soils for estimating soil-water content and root density, J. Hydrol., 295, 263–275. Murray-Smith D. J. (1987): Investigations of methods for the direct assessment of parameter sensitivity in linear closed-loop control systems, in Complex and distributed systems: analysis, simulation and control, edited by TZAFESTAS S. G. and BORNE P. (North-Holland, Amsterdam), pp. 323–328. Myounghak O., Yongsung K. and Junboum P. (2007): Factors affecting the complex permittivity spectrum of soil at a low frequency range of 1 kHz10 MHz, Environ Geol., 51, 821-833. Polder R., Andrade C., Elsener B., Vennesland Ø., Gulikers J., Weidert R. and Raupach M. (2000): Test methods for on site measurements of resistivity of concretes, Materials and Structures (M&S), 33, 603-611. Razavi B. (1995): Principles of Data Conversion System Design (IEEE Press). Samouëlian A., Cousin I., Tabbagh A-, Bruand A. and Richard G. (2005): Electrical resistivity survey in soil science: a review, Soil Till,. Res. 83 172-193. Sbartaï Z. M., Laurens S., Balayssac J. P., Arliguie G. and Ballivy G. (2006): Ability of the direct wave of radar ground-coupled antenna for NDT of concrete structures, NDT & E International, 39, 400-407. Scofield J. H. (1994): A Frequency-Domain Description of a Lock-in Amplifier, American Journal of Physics (AJP), 62, 129-133. Settimi A., Zirizzotti A., Baskaradas J. A. and Bianchi C. (2010): Inaccuracy assessment for simultaneous measurements of resistivity and permittivity applying a sensitivity and transfer function approaches, in press on Ann. Geophys.- Italy (Earth-Prints, http://hdl.handle.net/2122/5180). Settimi A., Zirizzotti A., Baskaradas J. A. and Bianchi C. (2009): Optimal requirements of a data acquisition system for a quadrupolar probe employed in electrical spectroscopy (Earth-Prints, http://hdl.handle.net/2122/5176). Tabbagh A., Hesse A. And Grard R. (1993): Determination of electrical properties of the ground at shallow depth with an electrostatic quadrupole: field trials on archaeological sites, Geophys. Prospect., 41, 579-597. Vannaroni G., Pettinelli E., Ottonello C., Cereti A., Della Monica G., Del Vento D., Di Lellis A. M., Di Maio R., Filippini R., Galli A., Menghini A., Orosei R., Orsini S., Pagnan S., Paolucci F., Pisani A. R., Schettini G., Storini M. and Tacconi G. (2004): MUSES: multi-sensor soil electromagnetic sounding, Planet. Space Sci., 52, 67–78. Walker J. P. and Houser P. R. (2002): Evaluation of the OhmMapper instrument for soil moisture measurement, Soil Science Society of America Journal, 66, 728-734 (http://www.geometrics.com/geometrics-products/geometrics-electro-magnetic-products/ohm- mapper/).en_US
dc.description.obiettivoSpecifico3.8. Geofisica per l'ambienteen_US
dc.description.fulltextopenen
dc.contributor.authorSettimi, A.-
dc.contributor.authorZirizzotti, A.-
dc.contributor.authorBaskaradas, J. A.-
dc.contributor.authorBianchi, C.-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia-
item.grantfulltextopen-
item.fulltextWith Fulltext-
crisitem.classification.parent05. General-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptSAP, School of Electrical and Electronics Engineering-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Reports
Files in This Item:
File Description SizeFormat 
quaderno79.pdfReport1.06 MBAdobe PDFView/Open
Show simple item record

Page view(s)

90
Last Week
0
Last month
0
checked on May 27, 2019

Download(s) 50

78
checked on May 27, 2019

Google ScholarTM

Check