Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6103
DC FieldValueLanguage
dc.contributor.authorallBianco, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallZaccarelli, L.; Institut de Physique du Globe, Parigien
dc.contributor.authorallCastellano, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallGargiulo, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2010-09-06T07:33:25Zen
dc.date.available2010-09-06T07:33:25Zen
dc.date.issued2010-06en
dc.identifier.urihttp://hdl.handle.net/2122/6103en
dc.description.abstractShear wave splitting is the elastic-equivalent of the well-known phenomenon of optical birefringence. A shear wave propagating through an anisotropic volume splits into two S waves (qS1 and qS2) that travel with different velocities and different polarization directions. This process generates two observables: Td that is the time delay between the two split S-waves, and the polarization direction of the faster one, qS1. In the upper crust this phenomenon has been interpreted to occur in zones of fluid-filled cracks, microcracks or preferentially oriented pore spaces. The time evolution of anisotropic distribution of microcracks due to a differential stress, according to the nonlinear anisotropic poroelasticity (APE) model, is explained by the fluid migration along pressure gradients between neighboring microcracks and pores. In this framework the shear wave splitting parameters are indicators of the state of stress in the upper crust. We obtained shear wave splitting measurements for local earthquakes occurred before the largest earthquake (M= 3.6 occurred October 9th, 1999) recorded at Mt. Vesuvius after the last eruption (March 1944). The arrival times of split shear waves and the polarization directions were detected by using the wavelet transform of a three-component signal. In order to avoid any spatial effects on the time behavior of the parameters, we performed the analysis for a selected dataset of doublets. Short term (of the order of tenth of days) variation of both Td and qS1 parameters are retrieved before the occurrence of the M=3. 6 event.en
dc.language.isoEnglishen
dc.publisher.nameOGS, Triesteen
dc.relation.ispartofBollettino di Geofisica Teorica ed Applicataen
dc.relation.ispartofseries/51 (2010)en
dc.subjectwave splittingen
dc.subjectwavelet transformen
dc.subjectMt. Vesuviusen
dc.titleComplex wavelet transform: an application to retrieve shear wave splitting time behavior at Mt. Vesuviusen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber253-263en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoringen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropyen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismologyen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysisen
dc.relation.referencesAster R. and Scott J.; 1993: Comprehensive identification of similar earthquakes in microearthquake data sets. Bull. Seism. Soc. Am., 83, 1307-1314. Auger E., Gasparini P., Virieux J. and Zollo A.; 2001: Seismic evidence of an extended magmatic sill under Mt. Vesuvius. Science, 294, 1510–1512. Bianco F., Castellano M., Milano G. and Vilardo G.; 1996: Shear-wave polarization alignment on the eastern flank of Mt. Etna volcano (Sicily, Italy). Annali di Geofisica, XXXXIX, 2, 429–443. Bianco F., Castellano M., Milano G., Ventura G. and Vilardo G.; 1998a: The Somma-Vesuvius stress-field induced by regional tectonic: evidences from seismological and mesostructural data. J. Vol. Geoth. Res., 82, 199–218. Bianco F., Castellano M. and Ventura G.; 1998b: Structural and seismological features of the 1989 syn-eruptive NNW–SSE fractures system at Mt. Etna. Geoph. Res. Lett., 25, 10, 1545–1548. Bianco F., Castellano M., Milano G., Vilardo G., Ferrucci F. and Gresta S.; 1999: The seismic crisis at Mt. Vesuvius during 1995 and 1996. Phys. Chem. Earth, 24, 977–983. Bianco F., Del Pezzo E., Saccorotti G. and Ventura G.; 2004: The role of hydrothermal fluids in triggering the July-August 2000 seismic swarm at Campi Flegrei (Italy): evidences from seismological and mesostructural data. J. Vol. Geoth. Res., 133, 229–246. Bianco F., Scarfì L., Del Pezzo E. and Patanè D.; 2006: Shear wave splitting changes associated with the 2001 volcanic eruption on Mount Etna. Geophys. Journ. Int., 167, 2, 959-967. doi:10.1111/j.1365-246X.2006.03152.x Bianco F. and Zaccarelli L.; 2009: A reappraisal of shear wave splitting parameters from Italian active volcanic areas through a semiautomatic algorithm. J. Seism., 13, 2, 253–266. doi 10.1007/s10950-008-9125-z. Booth D.C., Wyss M. and Gillard D.; 1992: Shear-wave polarization alignments recorded above the Kaoiki fault zone, Hawaii. Geophys. Res. Lett., 19, 1141–1144. Castellano M., Buonocunto C., Capello M. and La Rocca M.; 2002: Seismic surveillance of active volcanoes: the Osservatorio Vesuviano Seismic Network (OVSN– southern Italy). Seim. Res. Lett., 73, 168–175. Cochran E.S., Li Y.G. and Vidale J.E.; 2006: Anisotropy in the shallow crust observed around the San Andreas Fault before and after the 2004 M 6.0 Parkfield earthquake. Bull. Seism. Soc. Am., 96(4B), S364-S375. doi: 10.1785/0120050804. Crampin S., Booth D.C., Evans R., Peacock S. and Fletcher, J.B.; 1990: Changes in shear wave splitting at Anza near the time of the North Palm Springs Earthquake. J. Geophys. Res., 95, 11197-11212. Crampin S., Booth D.C., Evans R., Peacock S. and Fletcher, J.B.; 1991: Comment on "Quantitative Measurements of Shear Wave Polarizations at the Anza Seismic Network, Southern California: Implications for Shear Wave Splitting and Earthquake Prediction" by R. Aster C., Shearer P.M. and Berger J., J. Geophys. Res., 96, 6403-6414. Crampin S.; 1993: A review of the effects of crack geometry on wave propagation through aligned cracks. Can. J. Expl. Geophys., 29, 3-17. Crampin S. and Zatsepin S.V.; 1997: Modeling the compliance of crustal rock-II. Response to temporal changes before earthquakes. Geophys. J. Int., 129, 495–506. Crampin S.; 1999: Calculable fluid–rock interactions. J. Geol. Soc. London, 156, 501– 514. Crampin S., Peacock S., Gao Y. and Chastin S.; 2004: The scatter of time delays in shear beneath Mt. Vesuvius from seismic array data. Geophys. J. Int., 156, 39–44. Del Pezzo E., Bianco F., Petrosino S. and Saccorotti G.; 2004: Changes in coda decay rate and shear-wave splitting parameters associated with seismic swarms at Mt. Vesuvius, Italy. Bull. Seism. Soc. Am., 94, 2, 439–452. Gao Y., Wang P., Zheng S., Wang M., Chen Y. and Zhou H.; 1998: Temporal changes in shear-wave splitting at an isolated swarm of small earthquakes in 1992 near Dongfang, Hainan Island, southern China. Geophys. J. Int., 135, 102–112. Gao Y. and Crampin S.; 2004: Observations of stress relaxation before earthquakes. Geophys. J. Int., 157, 578-582. Geller R.J. and Mueller C.S.; 1980: Four similar events in central California. Geophys. Res. Lett, 7, 821-824. Gerst A. and Savage M.K.; 2004: Seismic anisotropy beneath Ruapehu volcano: a possible forecasting tool. Science, 306, 1543–1547. Hyppolite J., Angelier J. and Roure F.; 1994: A major change revealed by Quaternary stress patterns in the southern Apennines. Tectonophysics, 230, 199–210. Moriya H., Tanaka K. and Niitsuma H.; 2006: Shear wave splitting detected by using downhole triaxial seismic detector during dilatation of artificial subsurface fracture. Geophys. J. Int., 164, 401-410. Miller V. and Savage M.K.; 2001: Changes in seismic anisotropy after volcanic eruptions: evidence from Ruapehu. Science, 293, 2231–2233. Munson C.G., Thurber C.H., Li Y. and Okubo P.G.; 1995: Crustal shear wave anisotropy in southern Hawaii: Spatial and temporal analysis. J. Geophys. Res., 100, 20367–20377. Pandolfi D., Bean C. and Saccorotti G.; 2006: Coda wave interferometric detection of seismic velocity changes associated with the 1999 M=3.6 event at Mt. Vesuvius. Geophys. Res. Lett., 33, L06306. doi:10.1029/2005GL025355. Savage M.K., Shih X.R., Meyer R.C. and Aster R.C.; 1989: Shear-wave anisotropy of active tectonic regions via automated S-wave polarization analysis. Tectonophysics, 165, 279–292. Savage M.K., Peppin W.A. and Vetter U.R.; 1990: Shear wave anisotropy and stress direction in and near Long Valley caldera, California, 1979–1988. J. Geophys. Res., 95, 11165–11177. Scarpa R., Tronca F., Bianco F. and Del Pezzo E.; 2002: High resolution velocity structure beneath Mt. Vesuvius from seismic array data. Geophys. Res. Lett., 29, 21, 2040, doi: 10029/2002GL015576. Volti T. and Crampin S.; 2003: A four-year study of shear-wave splitting in Iceland: 2-Temporal changes before earthquakes and volcanic eruptions. In: Nieuwland R. (ed), New insights into structural interpretation and modeling, Geol. Soc. Spec. Publ. 212, 135–149. Zatsepin S.V. and Crampin S.; 1997: Modeling the compliance of crustal rock - I. Response of shear-wave splitting to differential stress. Geophys. J. Int., 129, 477–494. Zollo A., Gasparini P., Vireux J., Le Meur H., De Natale G., Biella G., Boschi E., Capuano P., De Franco R., Dell’Aversana P., De Matteis R., Guerra I., Iannacone G., Mirabile L. and Vilardo G.; 1996: Seismic evidence for a low-velocity zone in the upper crust beneath Mt.Vesuvius. Science, 274, 592-594.en
dc.description.obiettivoSpecifico1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attiveen
dc.description.obiettivoSpecifico3.1. Fisica dei terremotien
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.contributor.authorBianco, F.en
dc.contributor.authorZaccarelli, L.en
dc.contributor.authorCastellano, M.en
dc.contributor.authorGargiulo, G.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentInstitut de Physique du Globe, Parigien
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0001-5400-7724-
crisitem.author.orcid0000-0002-4053-7625-
crisitem.author.orcid0000-0003-1166-3486-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
BGTA-2010.pdfMain article3.93 MBAdobe PDF
Show simple item record

Page view(s) 50

502
checked on Apr 20, 2024

Download(s)

27
checked on Apr 20, 2024

Google ScholarTM

Check