Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/609
DC FieldValueLanguage
dc.contributor.authorallPaonita, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallMartelli, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.date.accessioned2006-01-12T14:00:23Zen
dc.date.available2006-01-12T14:00:23Zen
dc.date.issued2006en
dc.identifier.urihttp://hdl.handle.net/2122/609en
dc.description.abstractDespite its impact in understanding oceanic crust formation and eruptive styles of related volcanism, magma dynamics at midocean ridges are poorly known. Here, we propose a new method to assess ascent rates of mid-ocean ridge basalt (MORB) magmas,as well as their pre- and sin-eruptive dynamics. It is based on the idea that a rising magma can reach a variable degree of both CO2 supersaturation in melt and kinetic fractionation among noble gases in vesicles in relation to its ascent rate through the crust. To quantify the relationship, we have used a model of multicomponent bubble growth in MORB melts, developed by extending the single-component model of Proussevitch and Sahagian [A.A. Proussevitch, D.L. Sahagian, Dynamics and energetics of bubble growth in magmas: analytical formulation and numerical modeling, J. Geophys. Res. 103 (1998), 18223–18251.] to CO2–He–Ar gas mixtures. After proper parameterization, we have applied it to published suites of data having the required features (glasses from Pito Seamount and mid-Atlantic ridges). Our results highlight that the investigated MORB magmas display very different ranges of ascent rates: slow rises of popping rock forming-magmas that cross the crust (0.01–0.5 m/s), slightly faster rates of energetic effusions (0.1–1 m/s), up to rates of 1–10 m/s which fall on the edge between lava effusion and Hawaiian activity. Inside a single plumbing system, very dissimilar magma dynamics highlight the large differences in compressive stress of the oceanic crust on a small scale. Constraints on how the systems of ridges work, as well as the characteristics of the magmatic source, can also be obtained. Our model shows how measurements of both the dissolved gas concentration in melt and the volatile composition of vesicles in the same sample are crucial in recognizing the kinetic effects and definitively assessing magma dynamics. An effort should be made to correctly set the studied samples in the sequence of volcanic submarine deposits where they are collected. Enhanced knowledge of a number of physical properties of gas-bearing MOR magmas is also required, mainly noble gas diffusivities, to describe multicomponent bubble growth at a higher confidence level.en
dc.format.extent539 bytesen
dc.format.extent695380 bytesen
dc.format.mimetypetext/htmlen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofEarth and Planetary Science Lettersen
dc.relation.ispartofseries1-2/241(2006)en
dc.subjectBubble growthen
dc.subjectMORBen
dc.subjectNoble gasen
dc.subjectKinetic fractionationen
dc.subjectModelingen
dc.titleMagma dynamics at mid-ocean ridges by noble gas kinetic fractionation: Assessment of magmatic ascent ratesen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber138-158en
dc.identifier.URLhttp://www.sciencedirect.com/en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistryen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistryen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.03. Magmasen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamicsen
dc.identifier.doi10.1016/j.epsl.2005.10.018en
dc.relation.references[1] D.W. Forsyth, D.S. Scheirer, S.C. Webb, L.M. Dorman, J.A.Orcutt, A.J. Harding, D.K. Blackman, J. Phipps Morgan, R.S. Detrick, Y. Shen, C.J. Wolfe, J.P. Canales, D.R. Toomey, A.F. Sheehan, S.C. Solomon, W.S.D. Wilcock, Imaging the deep seismic structure beneath a mid-ocean ridge: the MELT experiment,Science 280 (1998) 1215–1218. [2] M. Jull, P.B. Kelemen, K. Sims, Consequences of diffuse and channelled porous melt migration on uranium series disequilibria,Geochim. Cosmochim. Acta 66 (2002) 4133– 4148. [3] H. Zou, A. Zindler, Y. Niu, Constraints on melt movement beneath the East Pacific Rise from 230Th–238U disequilibrium,Science 295 (2002) 107– 110. [4] D. Kuhn, T. Dahm, Simulation of magma ascent by dykes in the mantle beneath mid-ocean ridges, J. Geodyn. 38 (2004)147–159. [5] A.J. Calvert, Seismic evidence for a magma chamber beneath the slow-spreading Mid-Atlantic Ridge, Nature 377 (1995)410–414. [6] S.A. Hussenoeder, J.A. Collins, G.M. Kent, R.S. Detrick, TERA group, Seismic analysis of the axial magma chamber reflector along the southern East Pacific Rise from conventional reflection profiling, J. Geophys. Res. 101 (1996) 22087–22105. [7] J.D.L. White, J.L. Smellie, D.A. Clague, Explosive subaqueous volcanism, Geophysical Monograph Series, vol. 140, 2003 392 pp. [8] J.W. Head, L. Wilson, D. Smith, Mid-ocean ridge eruptive morphology and substructure: evidence for dike widths, eruption rates, and evolution of eruptions and axial volcanic ridges,J. Geophys. Res. 101 (1996) 28265–28280. [9] R. Hekinian, F. Pineau, S. Shilobreeva, D. Bideau, E. Gracia, M. Javoy, Deep sea explosive activity on the Mid-Atlantic Ridge near 34 degrees 50VN; magma composition, vesicularity and volatile content, J. Volcanol. Geotherm. Res. 98 (2000) 49–77. [10] J.W. Head, L. Wilson, Deep submarine pyroclastic eruptions:theory and predicted landforms and deposits, J. Volcanol. Geotherm. Res. 121 (2003) 155–193. [11] M.J. Kennish, R.A. Lutz, Morphology and distribution of lava flows on mid-ocean ridges: a review, Earth-Sci. Rev. 43 (1998)63–90. [12] K.H. Rubin, M.C. Smith, E.C. Bergmanis, M.R. Perfit, J.M. Sinton, R. Batiza, Geochemical heterogeneity within mid-ocean ridge lava flows: insights into eruption, emplacement and global variations in magma generation, Earth Planet. Sci. Lett. 188 (2001) 349–367. [13] M.C. Johnson, A.T. Anderson, M.J. Rutherford, Pre-eruptive volatile contents of magmas, in: R.B. Carroll, J.R. Holloway (Eds.), Volatiles in Magmas, Rev. Mineral., Mineral. Soc. Am.,Washington D.C., 1994, pp. 281– 323. [14] D.L. Hamilton, C.W. Burnham, E.F. Osborn, The solubility of water and effects of oxygen fugacity and water content on crystallization in mafic magmas, J. Petrol. 5 (1964) 21–39. [15] S. Vergniolle, C. Jaupart, Dynamics of degassing at Kilauea Volcano, Hawaii, J. Geophys. Res. 95 (1990) 2793–2809. [16] S. Verginolle, C. Jaupart, Separated two-phase flow and basaltic eruptions, J. Geophys. Res. 91 (1986) 12842–12860. [17] F.W. Klein, R.Y. Koyangi, J.S. Nakata, W.R. Tanigawa, The seismicity of Kilauea’s magmatic system, U. S. Geol. Surv. Prof. Pap. 1350 (1987) 1019–1184. [18] P. Sarda, D. Graham, Mid-ocean ridge popping rocks: implications for degassing at ridge crests, Earth Planet. Sci. Lett. 97 (1990) 268– 289. [19] Y. Bottinga, M. Javoy, MORB degassing: evolution of CO2,Earth Planet. Sci. Lett. 95 (1989) 215–225. [20] Y. Bottinga, M. Javoy, MORB degassing: bubble growth and ascent, Chem. Geol. 81 (1990) 255–270. [21] T.M. Gerlach, B.E. Taylor, Carbon isotope constraints on degassing of carbon dioxide from Kilauea volcano, Geochim. Cosmochim. Acta 54 (1990) 2051–2058. [22] M. Javoy, F. Pineau, The volatile record of a bpoppingQ rock from Mid-Atlantic Ridge at 148N, Earth Planet. Sci. Lett. 107 (1991) 598–611. [23] F. Pineau, M. Javoy, Strong degassing at ridge crests: the behavior of dissolved carbon and water in basalt glasses at 148N Mid-Atlantic Ridge, Earth Planet. Sci. Lett. 123 (1994) 179–198. [24] P. Cartigny, N. Jendrzejewski, F. Pineau, E. Petit, M. Javoy,Volatiles (C, N, Ar) variability in MORB and the respective roles of mantle source heterogeneity and degassing: the case of the South–West Indian Ridge, Earth Planet. Sci. Lett. 194 (2001)241–257. [25] C. Aubaud, F. Pineau, A. Jambon, M. Javoy, Kinetic disequilibrium of C, He, Ar and carbon isotopes during degassing of mid-ocean ridge basalts, Earth Planet. Sci. Lett. 222 (2004) 391–406. [26] P. Burnard, Eruption dynamics of bpopping rockQ from vesicle morphologies, J. Volcanol. Geotherm. Res. 92 (1999) 247–258. [27] J.E. Dixon, E.M. Stolper, J.R. Delaney, Infrared spectroscopic measurements of CO2 and H2O in Juan de Fuca Ridge basaltic glasses, Earth Planet. Sci. Lett. 90 (1988) 87–104. [28] D.E. Fisher, Helium, argon and xenon in crushed and melted MORB, Geochim. Cosmochim. Acta 61 (1997) 3003–3012. [29] P. Burnard, D. Harrison, G. Turner, R. Nesbitt, Degassing and contamination of noble gases in Mid-Atlantic Ridge basalts, Geochem. Geophys. Geosyst. 4 (2003), doi:10.1029/ 2002GC000326. [30] T. Hanyu, D.A. Clague, I. Kaneoka, T. Dunai, G.R. Davies,Noble gas systematics of submarine alkalic lavas near Hawaiian hotspot, Chem. Geol. 214 (2005) 135–155. [31] A.A. Proussevitch, D.L. Sahagian, Dynamics and energetics of bubble growth in magmas: analytical formulation and numerical modeling, J. Geophys. Res. 103 (1998) 18223–18251. [32] A. Jambon, H.W. Weber, F. Begemann, Helium and argon from an Atlantic MORB glass: concentration, distribution and isotopic composition, Earth Planet. Sci. Lett. 73 (1985) 255–267. [33] A.A. Proussevitch, D.L. Sahagian, A.T. Anderson, Dynamics of diffusive bubble growth in magmas: isothermal case, J. Geophys. Res. 98 (1993) 22283–22307. [34] A. Toramaru, Numerical study of nucleation and growth of bubbles in viscous magmas, J. Geophys. Res. 100 (1995)1913–1931. [35] V. Lyakhovsky, S. Hurwitz, O. Navon, Bubble growth in rhyolitic melts: experimental and numerical investigation, Bull. Volcanol. 58 (1996) 19–32. [36] A.A. Proussevitch, D.L. Sahagian, Dynamics of coupled diffusive and decompressive bubble growth in magmatic systems, J. Geophys. Res. 101 (1996) 17447–17456. [37] J.D. Blower, H.M. Mader, S.D.R. Wilson, Coupling viscous and diffusive controls on bubble growth during explosive volcanic eruption, Earth Planet. Sci. Lett. 193 (2001) 47–56. [38] N.G. Lensky, O. Navon, V. Lyakhovsky, Bubble growth during decompression of magma: experimental and theoretical investigation, J. Volcanol. Geotherm. Res. 129 (2004) 7–22. [39] P.M. Nuccio, A. Paonita, Magmatic degassing of multicomponent vapors and assessment of magma depth: application to Vulcano Island (Italy), Earth Planet. Sci. Lett. 193 (2001)467–481. [40] B. Marty, Nitrogen content of the mantle inferred from N2–Ar correlation in oceanic basalts, Nature 377 (1995) 326–329. [41] M. Moreira, T. Staudacher, P. Sarda, J. Schilling, C.J. Allegre, A primitive plume neon component in MORB: the Shona ridgeanomaly, South Atlantic (51–528S), Earth Planet. Sci. Lett. 133 (1995) 367–377. [42] M. Moreira, P.J. Valbracht, T. Staudacher, C.J. Allegre, Rare gas systematics in Red Sea ridge basalts, Geophys. Res. Lett. 23 (1996) 2453–2456. [43] M. Moreira, J. Kunz, C. Allegre, Rare gas systematics in popping rock: isotopic and elemental compositions in the upper mantle, Science 279 (1998) 1178–1181. [44] S. Niedermann, W. Bach, J. Erzinger, Noble gas evidence for a lower mantle component in MORBs from the southern East Pacific Rise: decoupling of helium and neon isotope systematics, Geochim. Cosmochim. Acta 61 (1997) 2697–2715. [45] S. Niedermann, W. Bach, Anomalously nucleogenic neon in North Chile Ridge basalt glasses suggesting a previously degassed mantle source, Earth Planet. Sci. Lett. 160 (1998) 447–462. [46] B. Marty, L. Zimmermann, Volatiles (He, C, N, Ar) in midocean ridge basalts: assessment of shallow-level fractionation and characterization of source composition, Geochim. Cosmochim. Acta 63 (1999) 3619–3633. [47] P. Sarda, M. Moreira, T. Staudacher, J. Schilling, C.J. Allegre,Rare gas systematics on the southernmost Mid-Atlantic Ridge: constraints on the lower mantle and the Dupal source, J. Geophys. Res. 105 (2000) 5973–5996. [48] M. Moreira, C.J. Allegre, Rare gas systematics in popping rock: isotopic and elemental compositions in the upper mantle, Science 279 (2002) 1178–1181. [49] P. Burnard, D.W. Graham, K.A. Farley, Mechanisms of magmatic gas loss along the Southeast Indian ridge and the Amsterdam-St Paul Plateau, Earth Planet. Sci. Lett. 203 (2002) 131– 148. [50] P. Burnard, D.W. Graham, K.A. Farley, Fractionation of noble gases (He, Ar) during MORB mantle melting: a case study on the Southeast Indian Ridge, Earth Planet. Sci. Lett. 227 (2004) 457–472. [51] C.G. MacPherson, D.R. Hilton, S. Newman, D.P. Mattey, CO2,13C/12C and H2O variability in natural basaltic glasses: a study comparing stepped heating and FTIR spectroscopic techniques, Geochim. Cosmochim. Acta 63 (1999) 1805–1813. [52] A.E. Saal, E.H. Hauri, C.H. Langmuir, M.R. Perfit, Vapor undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle, Nature 419 (2002) 451–455. [53] J.E. Dixon, L. Leist, C. Langmuir, J.-G. Schilling, Recycled dehydrated lithosphere observed in plume-influenced midocean-ridge basalt, Nature 420 (2002) 385–389. [54] K. Simons, J. Dixon, J.-G. Schilling, R. Kingsley, R. Poreda,Volatiles in basaltic glasses from the Easter-Salas y Gomez seamount chain and Easter microplate: implications fro geochemical cycling of volatile elements, Geochem. Geophys. Geosyst. 3 (2003), doi:10.1029/2001GC000173. [55] A. Jambon, L. Zimmermann, Major volatiles from a north atlantic MORB glass and calibration to He: size fraction analysis,Chem. Geol. 62 (1987) 177–189. [56] B. Marty, M. Ozima, Noble gas distribution in oceanic basalt glasses, Geochim. Cosmochim. Acta 50 (1986) 1093–1097. [57] B. Marty, Nitrogen content of the mantle inferred from N2–Ar correlation in oceanic basalts, Nature 377 (1995) 326–329. [58] Y. Nishio, T. Ishii, T. Gamo, Y. Sano, Volatile element isotopic systematics of the Rodrigues triple junction, Earth Planet. Sci. Lett. 170 (1999) 241–253. [59] P.M. Nuccio, A. Paonita, Investigation of the noble gas solubility in H2O–CO2 bearing silicate liquids at moderate pressure II: the Extended Ionic Porosity (EIP) model, Earth Planet. Sci. Lett. 183 (2000) 499–512. [60] D. Giordano, D.B. Dingwell, Non-Arrhenian multicomponent melt viscosity: a model, Earth Planet. Sci. Lett. 208 (2003)337–349. [61] E. Bourgue, P. Richet, The effect of dissolved CO2 on the density and viscosity of silicate melts: a preliminary study,Earth Planet. Sci. Lett. 193 (2001) 57–68. [62] R. Hekinian, J. Francheteau, R. Armijo, J.P. Cogne´, M. Constantin, J. Girardeau, R. Hey, D.F. Naar, R. Searle, Petrology of the Easter microplate region in the South Pacific, J. Volcanol. Geotherm. Res. 72 (1996) 259–289. [63] C.E. Brennen, Cavitation and Bubble Dynamics, Oxford University Press, 1995. [64] N.I. Kitarov, Y.B. Lebedev, A.M. Dorfman, N.S. Bagdassarov,Effects of temperature, pressure and volatiles on the surface tension of molten basalt, Geokhimia 10 (1979) 1427–1438. [65] A.A. Proussevitch, V. Kutolin, Surface tension of magmatic melts (in Russian), Geol. Geophys. 9 (1986) 58–67. [66] S. Hurwitz, O. Navon, Bubble nucleation in rhyolitic melts:experiments at high pressure, temperature and water content, Earth Planet. Sci. Lett. 122 (1994) 267–280. [67] J.E. Gardner, M. Hilton, M.R. Carroll, Experimental constrains on degassing of magma: isothermal bubble growth during continuous decompression from high pressure, Earth Planet. Sci. Lett. 168 (1999) 201–218. [68] J.E. Gardner, M. Hilton, M.R. Carroll, Bubble growth in highly viscous silicate melts during continuous decompression from high pressure, Geochim. Cosmochim. Acta 64 (2000) 1473–1483. [69] M.T. Mangan, L.G. Mastin, T.W. Sisson, Gas evolution in eruptive conduits: combining insights from high pressure and temperature experiments with steady-state flow modelling, J. Volcanol. Geotherm. Res. 129 (2004) 23–36. [70] M.T. Mangan, T.W. Sisson, W.B. Hankins, Decompression experiments kinetic controls on explosive silicic eruptions, Geophys. Res. Lett. 31 (2004), doi:10.1029/2004GL019509. [71] C.C. Mourtada-Bonnefoi, D. Laporte, Homogeneous bubble nucleation in rhyolitic magmas: an experimental study of the effect of H2O and CO2, J. Geophys. Res. 107 (2002), doi:10.1029/2001JB000290. [72] K. Yamada, H. Tanaka, K. Nakazawa, H. Emori, A new theory of bubble formation in magma, J. Geophys. Res. 110 (2005),doi:10.1029/2004JB003113. [73] E.B. Watson, M.A. Sneeringer, A. Ross, Diffusion of dissolved carbonate in magmas: experimental results and applications, Earth Planet. Sci. Lett. 61 (1982) 346–358. [74] M. Nowak, D. Schreen, K. Spickenbom, Argon and CO2 on the race track in silicate melts: a tool for the development of a CO2 speciation and diffusion model, Geochim. Cosmochim. Acta 68 (2004) 5127–5138. [75] G. Lux, The behavior of noble gases in silicate liquids: solution,diffusion, bubbles and surface effects, with applications to natural samples, Geochim. Cosmochim. Acta 51 (1987) 1549– 1560. [76] A.W. Hofman, Diffusion in natural silicate melts: a critical review, in: R.B. Hargraves (Ed.), Physics of Magmatic Processes,Princeton Univ. Press, Princeton, NJ, 1980, pp. 385– 417. [77] K. Roselieb, A. Jambon, Tracer diffusion of Mg, Ca, Sr, and Ba in Na-aluminosilicate melts, Geochim. Cosmochim. Acta 66 (2002) 109–123. [78] D.E. Swets, R.W. Lee, R.C. Frank, Diffusivity of helium in fused quartz, J. Chem. Phys. 34 (1961) 17–22. [79] J.E. Shelby, Helium migration in glass-forming oxides, J. Appl. Phys. 43 (1972) 3068– 3072. [80] J.E. Shelby, R.J. Eagan, Helium migration in sodium aluminosilicate glasses, J. Am. Ceram. Soc. 59 (1976) 420–425. [81] P. Papale, Modeling of the solubility of a two component H2O+CO2 fluid in silicate liquids, Am. Mineral. 84-4 (1999)477–492. [82] C.C. Mourtada-Bonnefoi, D. Laporte, Kinetics of bubble nucleation in rhyolitic melt: an experimental study of the effects of ascent rate, Earth Planet. Sci. Lett. 218 (2004) 521–537. [83] S.C. Singh, G.M. Kent, J.S. Collier, A.J. Harding, J.A. Orcutt,Melt to mush variations in crustal magma properties along the ridge crest at the southern East Pacific Rise, Nature 394 (1998) 874–878. [84] J.M. Babcock, A.J. Harding, G.M. Kent, J.A. Orcutt, An examination of along-axis variation of magma chamber width and crustal structure on the East Pacific Rise between 13830VN and 12820VN, J. Geophys. Res. 103 (1998) 30451–30467. [85] J.C. Tannehill, D.A. Anderson, R.H. Pletcher, Computational fluid mechanics and eat transfer, in: W.J. Minkowycs, E.M. Sparrow (Eds.), Series in Computational and Physical Processes in Mechanics and Thermal Sciences, Taylor and Francis, 1997.en
dc.description.fulltextpartially_openen
dc.contributor.authorPaonita, A.en
dc.contributor.authorMartelli, M.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.orcid0000-0001-9124-5027-
crisitem.author.orcid0000-0001-8525-1754-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Paonita et al. EPSL 2005.pdfMain article679.08 kBAdobe PDF
Redirect Elsevier.htmlRedirect-Elsevier539 BHTMLView/Open
Show simple item record

WEB OF SCIENCETM
Citations

20
checked on Feb 10, 2021

Page view(s) 20

263
checked on Apr 17, 2024

Download(s)

65
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric