Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/608
DC FieldValueLanguage
dc.contributor.authorallBerrino, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallRiccardi, U.; Dipartimento di Geofisica e Vulcanologia, Universita` «Federico II» di Napolien
dc.date.accessioned2006-01-11T18:03:27Zen
dc.date.available2006-01-11T18:03:27Zen
dc.date.issued2004en
dc.identifier.urihttp://hdl.handle.net/2122/608en
dc.description.abstractA wide set of dynamics phenomena (i.e., geodynamics, Post Glacial Rebound, seismicity and volcanic activity) can produce time gravity changes, which spectrum varies from short (1… 10 s) to long (more than 1 year) periods. The amplitude of the gravity variations is generally in the order of 10 8…10 9 g, consequently their detection requires instruments with high sensitivity and stability: then, high quality experimental data. Spring and superconducting gravimeters are intensively used with this target and they are frequently jointed with tiltmeters recording stations in order to measure the elastogravitational perturbation of the Earth. The far-field effects produced by large earthquakes on records collected by spring gravimeters and tiltmeters are investigated here. Gravity and tilt records were analyzed on time windows spanning the occurrence of large worldwide earthquakes; the gravity records have been collected on two stations approximately 600 km distant. The background noise level at the stations was characterized, in each season, in order to detect a possible seasonal dependence and the presence of spectral components which could hide or mask other geophysical signals, such as, for instance, the highest mode of the Seismic Free Oscillation (SFO) of the Earth. Some spectral components (6.5’; 8’; 9’; 14’, 20’, 51’) have been detected in gravity and tilt records on the occasion of large earthquakes and the effect of the SFO has been hypothesized. A quite different spectral content of the EW and NS tiltmeter components has been detected and interpreted as a consequence of the radiation pattern of the disturbances due to the earthquakes. Through the analysis of the instrumental sensitivity, instrumental effects have been detected for gravity meters at very low frequency.en
dc.format.extent436 bytesen
dc.format.extent541391 bytesen
dc.format.mimetypetext/htmlen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameBirkhauseren
dc.relation.ispartofPure and applied geophysicsen
dc.relation.ispartofseries161en
dc.subjectGravimetersen
dc.subjectseismic free oscillationen
dc.subjectearthquakesen
dc.subjecttiltmetersen
dc.titleFar-field Gravity and Tilt Signals by Large Earthquakes: Real or Instrumental Effects?en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1379–1397en
dc.identifier.URLwww.springerlink.comen
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformationsen
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variationsen
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoringen
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniquesen
dc.identifier.doi10.1007/s00024-004-2510-9en
dc.relation.referencesBERRINO, G., CORRADO, G., MAGLIULO, R., and RICCARDI, U. (1997), Continuous Record of the Gravity Changes at Mt. Vesuvius, Annali di Geofisica XL, N5, 1019–1028. BONVALOT, S., DIAMENT, M., and GABALDA, G. (1998), Continuous Gravity Recording with Scintrex CG-3M Meters: a Promising Tool for Monitoring Active Zones, Geophys. J. Int. 135, 470–494. BUDETTA, G. and CARBONE, D. (1997), Potential Application of the Scintrex CG-3M Gravimeter for Monitoring Volcanic Activity: Results of Field Trials on Mt. Etna, Sicily, J. Volcano. Geotherm. Res. 76, 199–214. CROSSLEY, D. and HINDERER, J. (1995), Global Geodynamics Project –GGP, Cah. Cent. Eur. Ge´ odyn. Se´ ismol. 11, 244–271. EKSTRO¨ M, G. (2001), Time Domain Analysis of Earth’s Long-period Background Seismic Radiation, J. Geophys. Res. 106, B11, 26483–26493. HINDERER, J. and CROSSLEY, D. (2000), Time Variations and Inferences on the Earth’s Structure and Dynamics, Surveys in Geophys. 21, 1–45. KANAMORI, H. and MORI, J. (1992), Harmonic Excitation of Mantle Rayleigh Waves by the 1991 Eruption of Mount Pinatubo, Philippines, Geophys. Res. Lett. 19, 721–724. LAY, T. and WALLACE, T. C., Modern Global Seismology (Academic Press, S. Diego, California 1995). MELCHIOR P., The Tides of the Planet Earth (Pergamon Press, Oxford 1983). PETERSON, J. (1993), Observations and Modelling of Seismic Background Noise, Open File Report 93–322, U.S. Department of Interior Geologica Survey, Albuquerque, New Mexico. RICCARDI, U., BERRINO, G., and CORRADO, G. (2002), Changes in the Instrumental Sensitivity for same Feedback Equipping LaCoste and Romberg Gravity Meters, Metrologia, 39, 509–515. SCHWAHN,W., BAKER, T., FALK, R., JEFFRIES, G., LOTHAMMER, A., RICHTER, B.,WILMES, H., andWOLF, P. (2000), Long-term Increase of Gravity at the Medicina Station (Northern Italy) Confirmed by Absolute and Superconducting Gravimetric Time Series, Cah. Cent. Eur. Ge´ odyn. Se´ ismol. 17, 145–168. TORGE, W., Gravimetry (de Gruyter, Berlin, New York 1989). USGS-NEIC (National Earthquakes Information Center) Web Site: http:// neic.usgs.gov VAN RUYMBEKE, M. (1991), New Feedback Electronics for LaCoste and Romberg Gravimeters, Cah. Cent. Eur. Ge´ odyn. Se´ ismol. 4, 333–337. VAN RUYMBEKE, M., VIEIRA, R., d’OREYE, N., SOMERHAUSEN, A., and GRAMMATIKA, N. (1995), Technological Approach from Walferdange to Lanzarote: The EDAS Concept. In Proceeding 12th Int. Symp. on Earth tides, Science press (Beijing, China), pp. 53–62. ZERBINI, S., PLAG, H. P., and RICHTER, B. (eds.) (2000), Wegener: Observations and Models, J. Geody. (Special Issue), 30, 120 pp. ZURN, W., BAYER, B., and WIDMER, R. (2002), A 3.7 mHz Signal on June 10, 1991, Bulletin d’Information des Mare´ es Terrestres, 135, 10717–10724.en
dc.description.fulltextpartially_openen
dc.contributor.authorBerrino, G.en
dc.contributor.authorRiccardi, U.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentDipartimento di Geofisica e Vulcanologia, Universita` «Federico II» di Napolien
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDipartimento di Scienze della Terra, Università “Federico II” di Napoli-
crisitem.author.orcid0000-0002-4703-2435-
crisitem.author.orcid0000-0003-0720-5415-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Berrino.pdf528.7 kBAdobe PDF
springerlink.htmredirect - springerlink436 BHTMLView/Open
Show simple item record

WEB OF SCIENCETM
Citations

3
checked on Feb 10, 2021

Page view(s)

156
checked on Mar 27, 2024

Download(s)

82
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric