Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6088
DC FieldValueLanguage
dc.contributor.authorallD’Auria, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallGiudicepietro, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallMartini, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallOrazi, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallPeluso, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallScarpato, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2010-08-09T07:21:14Zen
dc.date.available2010-08-09T07:21:14Zen
dc.date.issued2010-04en
dc.identifier.urihttp://hdl.handle.net/2122/6088en
dc.description.abstractWe propose a method for analyzing the polarization of three-component digital recordings using the discrete wavelet transform (DWT). This method allows for the automatic detection and separation of seismic phases that have a coherent linear or elliptical polarization. It can be correctly used in the analysis of seismic signals relating to volcanic activity because they arise from a complex wave field that consists of near-field and far-field components that have frequency-dependent polarization. First, the analytic extension of the signal is decomposed using DWT, then each single component is used to determine a local complex polarization vector in the timescale domain. This analysis reveals the presence of seismic phases with coherent polarization over a range of DWT scales and finite temporal intervals. Using the orthogonality property of the DWT, it is possible to isolate a single coherent component, reconstructing it in the time domain and computing the full polarization tensor. This procedure can be fully automated, introducing a quantitative definition of wavelet polarization coherence on the DWT dyadic grid. A recursive algorithm (called POLWAV) starts from the wavelet coefficient with the highest modulus, and then selects all of the neighbors that show coherence with it above a given threshold. We show how the POLWAValgorithm can be used for separating wave-field components and for detecting coherent seismic phases on continuous recordings. Example applications to actual seismic recordings at Stromboli Volcano (Tyrrhenian Sea) are presented.en
dc.language.isoEnglishen
dc.publisher.nameSEISMOLOGICAL SOC AMERen
dc.relation.ispartofBulletin of the Seismological Society of Americaen
dc.relation.ispartofseries2/100 (2010)en
dc.subjectPolarization Analysisen
dc.subjectDiscrete Wavelet Domainen
dc.titlePolarization Analysis in the Discrete Wavelet Domain: An Application to Volcano Seismologyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber670–683en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismologyen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysisen
dc.identifier.doi10.1785/0120090166en
dc.relation.referencesAnant, K. S., and F. U. Dowla (1997). Wavelet transform methods for phase identification in three-component seismograms, Bull. Seismol. Soc. Am. 87, no. 6, 1598–1612. Bataille, K., and J. M. Chiu (1991). Polarization analysis of high-frequency three-component seismic data, Bull. Seismol. Soc. Am. 81, no. 2, 622–642. Botella, F., J. Rosa-Herranz, J. Giner, S. Molina, and J. Galiana-Merino (2003). A real-time earthquake detector with prefiltering by wavelets, Comp. Geosci. 29, 911–919. Calvari, S., L. Spampinato, and L. Lodato (2006). The 5 April 2003 vulcanian paroxysmal explosion at Stromboli Volcano (Italy) from field observations and thermal data, J. Volcan. Geotherm. Res. 149, 160–175. Chouet, B. (1988). Resonance of a fluid-driven crack: Radiation properties and implications for the source of long-period events and harmonic tremor, J. Geophys. Res. 93, no. B5, 4375–4400. Chouet, B. A. (1996). New methods and future trends in seismological volcano monitoring, in Monitoring and Mitigation of Volcano Hazards, R. Scarpa and R. I. Tilling (Editors), Springer, Berlin. Chouet, B. (2003). Volcano seismology, Pure Appl. Geophys. 160, 739–788. Chouet, B., P. Dawson, and M. Martini (2008). Shallow-conduit dynamics at Stromboli Volcano, Italy, imaged from waveform inversions, Geol. Soc. Spec. Publ. 307, 57–84. Chouet, B., P. Dawson, T. Ohminato, M. Martini, G. Saccorotti, F. Giudicepietro, G. D. Luca, G. Milana, and R. Scarpa (2003). Source mechanisms of explosions at Stromboli Volcano, Italy, determined from momenttensor inversions of very-long-period data, J. Geoph. Res. 108, no. B1, ESE 7-1. Daubechies, I. (1992). Ten Lectures on Wavelets, Society for Industrial and Applied Mathematics, Philadelphia. Daubechies, I. (1993). Orthonormal bases of compactly supported wavelets. II variations on a theme, SIAM J. Math. Anal. 24, no. 2, 449–519. D’Auria, L., F. Giudicepietro, M. Martini, and R. Peluso (2006). Seismological insight into the kinematics of the 5 April 2003 vulcanian explosion at Stromboli Volcano (southern Italy), Geoph. Res. Lett. 33, L08308. De Cesare, W., M. Orazi, R. Peluso, G. Scarpato, A. Caputo, L. D’Auria, F. Giudicepietro, M. Martini, C. Buonocunto, M. Capello, and A. M. Esposito (2009). The broadband seismic network of Stromboli Volcano, Italy, Seism. Res. Lett. 80, no. 3, 435–439. Diallo, M. S., M. Kulesh, M. Holschneider, K. Kurennaya, and F. Scherbaum (2006). Instantaneous polarization attributes based on an adaptive approximate covariance method, Geophysics 71, no. 5, V99–V104. Diallo, M., M. Kulesh, M. Holschneider, and F. Scherbaum (2005). Instantaneous polarization attributes in the time-frequency domain and wavefield separation. Geophys. Prospect 53, 723–731. Galiana-Merino, J., J. Rosa-Herranz, P. Jauregui, S. Molina, and J. Giner (2007). Wavelet transform methods for azimuth estimation on local three-component seismograms, Bull. Seismol. Soc. Am. 97, no. 3, 793–803. Giudicepietro, F., L.D’Auria, M. Martini, T. Caputo, R. Peluso,W. D. Cesare, M. Orazi, and G. Scarpato (2009). Changes in the VLP seismic source during the 2007 Stromboli eruption, J. Volcan. Geotherm. Res. 182, 162–171. Hellweg, M. (2003). The polarization of volcanic seismic signals: Medium or source?, J. Volcan. Geotherm. Res. 128, 159–176. Holschneider, M., M. Diallo, M. Kulesh, M. Ohrnberger, E. Luck, and F. Scherbaum (2005). Characterization of dispersive surface waves using continuous wavelet transforms, Geophys. J. Int. 163, 463–478. Kanasewich, E. R. (1981). Time Sequence Analysis in Geophysics, The University of Alberta Press, Alberta. Kulesh, M., M. Diallo, and M. Holschneider (2005). Wavelet analysis of ellipticity, dispersion, and dissipation properties of Rayleigh waves, Acoust. Phys. 51, no. 4, 500–510. Kulesh, M., M. Diallo, M. Holschneider, K. Kurennaya, F. Kruger, M. Ohrnberger, and F. Scherbaum (2007). Polarization analysis in the wavelet domain based on adaptive covariance method, Geophys. J. Int. 170, 667–678. Kulesh, M., M. Holschneider, M. Diallo, Q. Xie, and F. Scherbaum (2005). Modeling of wave dispersion using continuous wavelet transform, Pure Appl. Geophys. 162, 843–855. Kumar, P., and E. Foufoula-Georgiou (1997).Wavelet analysis for geophysical applications, Rev. Geophys. 85, no. 4, 385–412. Lahr, J., B. Chouet, C. Stephens, J. Power, and R. Page (1994). Earthquake classification, location, and error analysis in a volcanic environment: Implications for the magmatic system of the 1989–1990 eruptions at Redoubt Volcano, Alaska, J. Volcan. Geotherm. Res. 62, 137–151. Lilly, J. M., and J. Park (1995). Multiwavelet spectral and polarization analyses of seismic records, Geophys. J. Int. 122, 1001–1021. Marchetti, E., and M. Ripepe (2005). Stability of the seismic source during effusive and explosive activity at Stromboli Volcano, Geophys. Res. Lett. 32, L03307. Martini, M., L. D’Auria, T. Caputo, F. Giudicepietro, R. Peluso, A. Caputo, W. D. Cesare, A. M. Esposito, M. Orazi, and G. Scarpato (2008). Seismological insights on the shallow magma system, in The Stromboli Volcano. An integrated study of the 2002–2003 Eruption, S. Calvari, S. Inguaggiato, G. Puglisi, M. Ripepe, and M. Rosi (Editors), American Geophysical Union 182, 279–286. Martini, M., F. Giudicepietro, L. D’Auria, A. M. Esposito, T. Caputo, R. Curciotti, W. D. Cesare, M. Orazi, G. Scarpato, A. Caputo, R. Peluso, P. Ricciolino, A. Linde, and S. Sacks (2007). Seismological monitoring of the February 2007 effusive eruption of the Stromboli Volcano, Ann. Geophys. 50, no. 6, 775–788. Matsubayashi, H. (1995). The source of the long period tremors and the very long period events preceding the mud eruption at Aso Volcano, Japan, Master’s Thesis, Tokyo University, Tokyo. Montalbetti, J. R., and E. R. Kanasewich (1970). Enhancement of teleseismic body phases with a polarization filter, Geophys. J. R. Astr. Soc. 21, 119–129. Moriya, H., and H. Niitsuma (1996). Precise detection of a P-wave in low S=N signal by using time–frequency representations of a triaxial hodogram, Geophysics 61, no. 5, 1453–1466. Neuberg, J., and S. Pointer (2000). Effects of volcano topography on seismic broadband waveforms, Geophys. J. Int. 143, 239–248. Ohminato, T., B. A. Chouet, P. Dawson, and S. Kedar (1998). Waveform inversion of very long period impulsive signals associated with magmatic injection beneath Kilauea Volcano, Hawaii, J. Geophys. Res. 103, no. B10, 23,839–23,862. Park, J., F. Vernon III, and C. R. Lindberg (1987). Frequency dependent polarization analysis of high-frequency seismograms, J. Geophys. Res. 92, 12,664–12,647. Paulssen, H., A. L. Levshin, A. V. Lander, and R. Snieder (1990). Time- and frequency-dependent polarization analysis: Anomalous surface wave observations in Iberia, Geophys. J. Int. 1990, no. 103, 483–496. Pinnegar, C. (2006). Polarization analysis and polarization filtering of three-component signals with the time–frequency S transform, Geophys. J. Int. 165, 596–606. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (2002). Numerical Recipes in C++, Cambridge U Press, New York. Roueff, A., J. Chanussot, and J. I. Mars (2006). Estimation of polarization parameters using time–frequency representation and its application to waves separation, Signal Process. 86, 3714–3731. Saccorotti, G., V. Nisii, and E. D. Pezzo (2008). Coherent-subspace array processing based on wavelet covariance: An application to broad-band, seismo-volcanic signals, Geophys. J. Int. 174, 435–450. Soma, N., H. Niitsuma, and R. Baria (2002). Reflection technique in time–frequency domain using multicomponent acoustic emission signals and application to geothermal reservoirs, Geophysics 67, no. 3, 928–938. Torrence, C., and G. P. Compo (1997). A practical guide to wavelet analysis, Bull. Am. Meteorolog. Soc. 79, no. 1, 61–78. Vidale, J. E. (1986). Complex polarization analysis of particle motion, Bull. Seismol. Soc. Am. 76, no. 5, 1393–1405. Wassermann, J. (2002). Volcano seismology, in IASPEI New Manual of Seismological Observatory Practice, P. Bormann (Editor), Vol. 1, GeoForschungsZentrum, Potsdam. Zhang, H., C. Thurber, and C. Rowe (2003). Automatic P-wave arrival detection and picking with multiscale wavelet analysis for singlecomponent recordings, Bull. Seismol. Soc. Am. 93, no. 5, 1904–1912. Zobin, V. (2003). Introduction to Volcano Seismology, Elsevier Science, Amsterdam.en
dc.description.obiettivoSpecifico1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attiveen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorD’Auria, L.en
dc.contributor.authorGiudicepietro, F.en
dc.contributor.authorMartini, M.en
dc.contributor.authorOrazi, M.en
dc.contributor.authorPeluso, R.en
dc.contributor.authorScarpato, G.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0001-6198-8655-
crisitem.author.orcid0000-0001-9934-9218-
crisitem.author.orcid0000-0003-2772-2989-
crisitem.author.orcid0000-0001-6276-5832-
crisitem.author.orcid0000-0003-3048-5283-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2010_DAuria_BSSA.pdf3.44 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

16
checked on Feb 7, 2021

Page view(s) 50

229
checked on Apr 24, 2024

Download(s)

29
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric