Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6086
DC FieldValueLanguage
dc.contributor.authorallVilardo, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallIsaia, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallVentura, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallDe Martino, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallTerranova, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2010-08-09T07:16:35Zen
dc.date.available2010-08-09T07:16:35Zen
dc.date.issued2010-10en
dc.identifier.urihttp://hdl.handle.net/2122/6086en
dc.description.abstractPermanent Scatterers Synthetic Aperture Radar Interferometry (PSInSAR) and Global Position System (GPS) are applied to investigate the most recent surface deformation of the Campi Flegrei caldera. The PSInSAR analysis, based on SAR data acquired by ERS-1/2 sensors during the 1992–2001 time interval and by the Radarsat sensor during 2003–2007, identifies displacement patterns over wide areas with high spatial resolution. GPS data acquired by the Neapolitan Volcanic Continuous GPS network provide detailed ground velocity information of specific sites. The satellite-derived data allow us to characterize the deformation pattern that affected the Campi Flegrei caldera during two recent subsidence (1992–1999) and uplift (2005– 2006) phases. PSInSAR results show the re-activation of the caldera ring-faults, intra-caldera faults, and eruptive fissures. We discuss the results in the light of the available volcanological, structural and geophysical data and propose a relationship between the structures activated during the recent unrest episodes and those responsible for the recent (b3.8–4 ka) volcanism. The combined interpretation of the collected data show that (a) the caldera consists of two sectors separated by a N–S striking faulting zone and (b) the intra-caldera NW–SE faults and eruptive fissures in the central-eastern sector re-activated during the studied unrest episodes and represent possible pathways for the ascent of magma and/or gas to the surface. In this sector, maximum horizontal strain, recent volcanism (3.8–4 ka), active degassing and seismicity concentrate. The fault re-activation is related to the dynamics of the caldera and not to tectonic stress. The deformation fields of the uplift and subsidence episodes are consistent with hydrothermal processes and degassing from a magmatic reservoir that is significantly smaller than the large (∼40 km3) magma chamber responsible for the caldera formation. We provide evidence that the monitoring of the horizontal and vertical components of deformation improves the identification of active, aseismic faults. Accordingly, we suggest that future ground deformation models should include the re-activation of the detected structures.en
dc.description.sponsorshipThis study has been supported by the TELLUS project (Telerilevamento Laboratori Unità di Supporto), which has been developed in the framework of the PODIS project (Progetto Operativo Difesa Suolo) of the Ministero dell'Ambiente e per la Tutela del Territorio e del Mare,and has been funded by the European Union QCS 2000–2006 PONATAS, by INGV-Osservatorio Vesuviano, and by 'Creep' IYPE-UNESCO project.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofRemote Sensing of Environmenten
dc.relation.ispartofseries10/114 (2010)en
dc.subjectPSInSARen
dc.subjectFault re-activationen
dc.subjectCampi Flegreien
dc.subjectCalderaen
dc.titleInSAR Permanent Scatterer analysis reveals fault re-activation during inflation and deflation episodes at Campi Flegrei calderaen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber2373-2383en
dc.identifier.URLhttp://www.sciencedirect.com/science/journal/00344257en
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformationsen
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoringen
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesyen
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniquesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risken
dc.identifier.doi10.1016/j.rse.2010.05.014en
dc.relation.referencesAcocella, V. (2008). Activating and reactivating pairs of nested collapses during calderaforming eruptions: Campi Flegrei (Italy). Geophysical Research Letters, 35, L17304, doi:10.1029/2008GL035078. Amoruso, A., Crescentini, L., Linde, A. T., Sacks, I. S., Scarpa, R., & Romano, P. (2007). A horizontal crack in a layered structure satisfies deformation for the 2004–2006 uplift of Campi Flegrei. Geophysical Research Letters, 34, L22313, doi: 10.1029/2007GL031644. Battaglia, M., Troise, C., Obrizzo, F., Pingue, F., & De Natale, G. (2006). Evidence for fluid migration as the source of deformation at Campi Flegrei caldera (Italy). Geophysical Research Letters, 33, L01307. Bianco, F., & Zaccarelli, L. (2009). A reappraisal of shear wave splitting parameters from Italian active volcanic areas through a semiautomatic algorithm. Journal of Seismology, 13, 253−266. Bodnar, R., Cannatelli, C., De Vivo, B., Lima, A., Belkin, H., & Milia, A. (2007). Quantitative model for magma degassing and ground deformation (bradyseism) at Campi Flegrei. Italy, Geology, 35, 791−794. Bruno, P. P. (2004). Structure and evolution of the Bay of Pozzuoli (Italy) using marine seismic reflection data: Implications for collapse of the Campi Flegrei caldera. Bulletin of Volcanology, 66, 342−355. Chiarabba, C., & Moretti, M. (2006). An insight into the unrest phenomena at the Campi Flegrei caldera from Vp and Vp/Vs tomography. Terra Nova, 18, 373−379. Chiodini, G. (2009). CO2/CH4 ratio in fumaroles a powerful tool to detect magma degassing episodes at quiescent volcanoes. Geophysical Research Letters, 36, L02302. Chiodini, G., Frondini, F., Cardellini, C., Granieri, D., Marini, L., & Ventura, G. (2001). CO2 degassing and energy release at Solfatara volcano, Campi Flegrei, Italy. Journal of Geophysical Research, 106, 16213−16222. Colesanti, C., Ferretti, A., Locatelli, R., Novali, F., & Savio, G. (2003). Permanent Scatterers: Precision assessment and multi-platform analysis. IGARSS 2003, Tolosa (pp. 1−3). Cusano, P., Petrosino, S., & Saccorotti, G. (2008). Hydrothermal origin for sustained long-period (LP) activity at Campi Flegrei Volcanic Complex Italy. Journal of Volcanology and Geothermal Research, 177, 1035−1044. D'Antonio, M., Civetta, L., Orsi, G., Pappalardo, L., Piochi, M., Carandente, A., de Vita, S., Di Vito, M. A., & Isaia, R. (1999). The present state of the magmatic system of the Campi Flegrei caldera based on a reconstruction of its behavior in the past 12 ka. Journal of Volcanology and Geothermal Research, 91, 247−268. Dach, R., Hugentobler, U., Fridez, P., & Meindl, M. (Eds.). (2007). Bernese GPS Software Version 5.0, Astronomical Institute, University of Bern, Switzerland (pp. 1−612).. de Lorenzo, S., Gasparini, P., Mongelli, F., & Zollo, A. (2001). Thermal state of the Campi Flegrei caldera inferred from seismic attenuation tomography. Journal of geodynamics, 32, 467−487. De Natale, G., & Pingue, F. (1993). Ground deformations in collapsed caldera structures. Journal of Volcanology and Geothermal Research, 57, 19−38. Di Vito, M. A., Isaia, R., Orsi, G., Southon, J., de Vita, S., D'Antonio, M., Pappalardo, L., & Piochi, M. (1999). Volcanism and deformation since 12000 years at the Campi Flegrei caldera (Italy). Journal of Volcanology and Geothermal Research, 91, 221−246. Ferretti, A., Prati, C., & Rocca, F. (2000). Nonlinear subsidence rate estimation using Permanent Scatterers in differential SAR interferometry. IEEE Transactions on Geosciences and Remote Sensing, 38, 2202−2212. Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent Scatters in SAR Interferometry. IEEE Transactions on Geosciences and Remote Sensing, 39, 8−20. Ferretti, A., Savio, G., Barzaghi, R., Borghi, A., Musazzi, S., Novali, F., Prati, C., & Rocca, F. (2007). Submillimeter accuracy of InSAR time series: Experimental validation. IEEE Transactions on Geoscience and Remote Sensing, 45(5), 1142−1153. Finnegan, N. J., & Pritchard, M. E. (2009). Magnitude and duration of surface uplift above the Socorro magma body. Geology, 37(no. 3), 231−234, doi:10.1130/G25132A.1. Folch, A., & Gottsmann, J. (2006). Faults and ground uplift at active calderas. In C. Troise, G. De Natale, & C. R. J. Kilburn (Eds.), Mechanisms of Activity and Unrest at Large CalderasGeological Society of London. (pp. 109−120). Geyer, A., & Martì, J. (2009). Stress fields controlling the formation of nested and overlapping calderas, Implications for the understanding of caldera unrest. Journal of Volcanology and Geothermal Research, 181, 185−195. Gottsmann, J., & Battaglia, M. (2008). Deciphering causes of unrest at explosive collapse calderas, Recent advances and future challenges of joint time-lapse gravimetric and ground deformation studies. In J. Gottsmann, & M. Marti (Eds.), Caldera Volcanism, Analysis, Modeling and Response, Developments in Volcanology, 10. (pp. 418−446): Elsevier. Isaia, R., Marianelli, P., & Sbrana, A. (2009). Caldera unrest prior to intense volcanism in Campi Flegrei (Italy) at 4.0 ka B.P.: Implications for caldera dynamics and future eruptive scenarios. Geophysical Research Letters, doi:10.1029/2009GL040513. Kwoun, O., Lu, Z., Neal, C., & Wicks, C. (2006). Quiescent deformation of the Aniakchak Caldera, Alaska, mapped by InSAR. Geology, 34(1), 5−8, doi:10.1130/G22015.1. Kwoun, O. I., Lu, Z., Neal, C., Jr., & Wicks, C. (2006). Quiescent deformation of the Aniakchak Caldera, Alaska, mapped by InSAR. Geology, 34, 5−8. Lanari, R., Berardino, P., Borgstrom, S., Del Gaudio, C., De Martino, P., Fornaro, G., Guarino, S., Ricciardi, G. P., Sansosti, E., & Lundgren, P. (2004). The use of IFSAR and classical geodetic techniques in civil protection scenarios, Application to the Campi Flegrei uplift event of 2000. Journal of Volcanology and Geothermal Research, 133, 247−260. Lanari, R., Casu, F., Manzo, M., Zeni, G., Berardino, P., Manunta, M., et al. (2007). An overview of the Small Baseline subset algorithm: A DInSAR technique for surface deformation analysis. Pure and Applied Geophysics, 164, 637−661. Lowenstern, J. B., Smith, R. B., & Hill, D. P. (2006). Monitoring super-volcanoes, geophysical and geochemical signals at Yellowstone and other large caldera systems. Philosophical Transactions of the Royal Society A, 364, 2055−2072. Lu, Z., Kwoun, O., & Rykus, R. (2007). Interferometric syntetic aperture radar (InSAR): Its past, present and future. Photogrammetric Engineering & Remote Sensing, 73(3), 217−221. Lundgren, P., Casu, F., Manzo, M., Pepe, A., Berardino, P., Sansosti, E., & Lanari, R. (2004). Gravity and magma induced spreading of Mount Etna volcano revealed by satellite radar interferometry. Geophysical Research Letters, 31, L04602, doi: 10.1029/2003GL018736. Mangiacapra, A., Moretti, R., Rutherford, M., Civetta, L., Orsi, G., & Papale, P. (2008). The deep magmatic system of the Campi Flegrei caldera (Italy). Geophysical Research Letters, 35, L21, doi:10.1029/2008GL035550. Manzo, M., Ricciardi, G. P., Casu, F., Ventura, G., Zeni, G., Borgström, S., Berardino, P., Del Gaudio, C., & Lanari, R. (2006). Surface deformation analysis in the Ischia island (Italy) based on spaceborne radar interferometry. Journal of Volcanology and Geothermal Research, 151, 399−416. Martí, J., Ablay, G. J., Redshaw, L. T., & Sparks, R. S. J. (1994). Experimental studies of collapse calderas. Journal of the Geological Society of London, 151, 919−929. Massironi, M., Zampieri, D., Bianchi, M., Schiavo, A., & Franceschini, A. (2009). Use of PSInSAR™ data to infer active tectonics: Clues on the differential uplift across the Giudicarie belt (Central-Eastern Alps, Italy). Tectonophysics, 476, 297−303, doi: 10.1016/j.tecto.2009.05.025. Milano, G., Petrazzuoli, S., & Ventura, G. (2004). Effects of the hydrothermal circulation on the strain field of the Campanian Plain (southern Italy). Terra Nova, 16, 205−209. Ohkura, H., & Shimada, M. (2001). InSAR analysis of Miyakejima Volcano with RADARSAT images. Proceedings IGARSS 2001, Sydney July 9–13, 5pp. Orsi, G., Civetta, L., Del Gaudio, C., De Vita, S., Di Vito, M. A., Isaia, R., Petrazzuoli, S., Ricciardi, G. P., & Ricco, C. (1999). Short-term ground deformations and seismicity in the nested Campi Flegrei caldera (Italy). Journal of Volcanology and Geothermal Research, 91, 415−451. Ricco, C., Aquino, I., Borgstrom, S., & Del Gaudio, C. (2007). A study of tilt change recorded from July to October 2006 at the Phlegraean Fields (Naples, Italy). Annali of Geophysics, 50, 661−674. Rocca, F., Prati, C., Monti Guarnieri, A., & Ferretti, A. (2000). SAR interferometry and its applications. Surveys in Geophysics, 21, 159−176. Rosi, M., & Sbrana, A. (1987). The Phlegraean fields. Quaderni de "La ricerca Scientifica" CNR, 114, 1−175. Rott, H. (2009). Advances in interferometric synthetic aperture radar (InSAR) in earth system science. Progress in Physical Geography, 33(6), 769−791, doi: 10.1177/0309133309350263. Sacchi, M., Alessio, G., Aquino, I., Esposito, E., Molosso, F., Nappi, R., Porfido, S., & Violante, C. (2009). Risultati preliminari della campagna oceanografica CAFE_07-Leg 3 nei Golfi di Napoli e Pozzuoli, Mar Tirreno Orientale. Quaderni di Geofisica, 64, 1−28. Saunders, S. J. (2005). The possible contribution of circumferential fault intrusion to caldera resurgence. Bulletin of Volcanology, 67, 57−71. Sepe, V., Atzori, S., & Ventura, G. (2007). Subsidence due to crack closure and depressurization of hydrothermal systems: A case study from Mt. Epomeo (Ischia Island, Italy). : Terra Nova, doi:10.1111/j.1365-3121.2006.00727.x. Sparks, R. S. J., Self, S., Grattan, J. P., Oppenheimer, C., Pyle, D. M., & Rymer, H. (2005). Supereruptions, global effects and future threats. Report of a Geological Society of London Working Group (pp. 24). London: The Geological Society. Steigenberger, P., Rothacher, M., Dietrich, R., Fritsche, M., Rülke, A., & Vey, S. (2006). Reprocessing of a global GPS network. Journal of Geophysical Research, 111, B05402, doi:10.1029/2005JB003747. Teza, G., Pesci, A., & Galgaro, A. (2008). Grid_strain and grid_strain3, Software packages for strain field computation in 2D and 3D environments. Computers & Geosciences, 34, 1142−1153. Tizzani, P., Berardino, P., Casu, F., Euillades, P., Manzo, M., Ricciardi, G. P., Zeni, G., & Lanari, R. (2007). Surface deformation of Long Valley caldera and Mono Basin, California, investigated with the SBAS-InSAR approach. Remote Sensing of Environment, 108, 277−289, doi:10.1016/j.rse.2006.11.015. Trasatti, E., Casu, F., Giunchi, C., Pepe, S., Solaro, G., Tagliaventi, S., Berardino, P., Manzo, M., Pepe, A., Ricciardi, G. P., Sansosti, E., Tizzani, P., Zeni, G., & Lanari, R. (2008). The 2004–2006 uplift episode at Campi Flegrei caldera (Italy), Constraints from SBASDInSAR ENVISAT data and Bayesian source inference. Geophysical Research Letters, 35, L07308, doi:10.1029/2007GL033091. Vasco, D. W., Rucci, A., Ferretti, A., Novali, F., Bissell, R. C., Ringrose, P. S., Mathieson, A. S., & Wright, I. W. (2010). Satellite-based measurements of surface deformation reveal fluid flow associated with the geological storage of carbon dioxide. Geophys. Res. Lett., 37, L03303, doi:10.1029/2009GL041544. Vilardo, G., Ventura, G., Terranova, C., Matano, F., & Nardò, S. (2009). Ground deformation due to tectonic, hydrothermal, gravity, hydrogeological, and anthropic processes in the Campania Region (Southern Italy) from Permanent Scatterers Synthetic Aperture Radar Interferometry. Remote Sensing of Environment, 113, 197−212. Wicks, C. W., Thatcher, W., Dzurisin, D., & Svarc, J. (2006). Uplift, thermal unrest and magma intrusion at yellowstone caldera. Nature, 440(7080), 72−75, doi:10.1038/ nature04507.en
dc.description.obiettivoSpecifico1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attiveen
dc.description.obiettivoSpecifico5.5. TTC - Sistema Informativo Territorialeen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.contributor.authorVilardo, G.en
dc.contributor.authorIsaia, R.en
dc.contributor.authorVentura, G.en
dc.contributor.authorDe Martino, P.en
dc.contributor.authorTerranova, C.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0001-7240-4467-
crisitem.author.orcid0000-0001-7277-2358-
crisitem.author.orcid0000-0001-9388-9985-
crisitem.author.orcid0000-0002-9584-3347-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Vilardo_RSE_2010_Campi Flegrei.pdfMain Article4.3 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

44
checked on Feb 10, 2021

Page view(s) 20

431
checked on Apr 24, 2024

Download(s)

36
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric