Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6080
DC FieldValueLanguage
dc.contributor.authorallCarlino, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallSomma, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2010-07-13T07:44:58Zen
dc.date.available2010-07-13T07:44:58Zen
dc.date.issued2010en
dc.identifier.urihttp://hdl.handle.net/2122/6080en
dc.description.abstractCaldera eruptions are among the most hazardous of natural phenomena. Many calderas around the world are active and are characterised by recurrent uplift and subsidence periods due to the dynamics of their magma reservoirs. These periods of unrest are, in some cases, accompanied by eruptions. At Campi Flegrei caldera (CFc), which is an area characterised by very high volcanic risk, the recurrence of this behaviour has stimulated the study of the rock rheology around the magma chamber, in order to estimate the likelihood of an eruption. This study considers different scenarios of shallow crustal behaviour, taking into account the earlier models of CFc ground deformation and caldera eruptions, and including recent geophysical investigations of the area. A semi-quantitative evaluation of the different factors that lead to magma storage or to its eruption (such as magma chamber size, wall-rock viscosity, temperature, and regional tectonic strain rate) is reported here for elastic and viscoelastic conditions. Considering the large magmatic sources of the CFc ignimbrite eruptions (400–2,000 km3) and a wall-rock viscosity between 1018 and 1020 Pa s, the conditions for eruptive failure are difficult to attain. Smaller source dimensions (a few cubic kilometres) promote the condition for fracture (eruption) rather than for the flow of wall rock. We also analyse the influence of the regional extensional stress regime on magma storage and eruptions, and the thermal stress as a possible source of caldera uplift. The present study also emphasises the difficulty of distinguishing eruption and non-eruption scenarios at CFc, since an unambiguous model that accounts for the rock rheology, magma-source dimensions and locations and regional stress field influences is still lacking.en
dc.language.isoEnglishen
dc.publisher.nameSpringer-Verlagen
dc.relation.ispartofBull Volcanol.en
dc.relation.ispartofseries7/72 (2010)en
dc.subjectCampi Flegrei calderaen
dc.subjectCaldera eruptionen
dc.subjectYield strengthen
dc.subjectMagma storageen
dc.titleEruptive versus non-eruptive behaviour of large calderas: the example of Campi Flegrei caldera (southern Italy)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber871-886en
dc.subject.INGV04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.01. Earth Interior::04.01.05. Rheologyen
dc.identifier.doi10.1007/s00445-010-0370-yen
dc.relation.referencesAGIP (1987) Geologia e geofisica del sistema geotermico dei Campi Flegrei, Technical report. Settore Esplor e Ric Geoterm-Metodol per l’Esplor Geotermica, San Donato Milanese Italy, pp 1–23 Amadei B, Stephansson O (1997) Rock stress and its measurement. Chapman and Hall, London Amoruso A, Crescentini L, Berrino G (2008) Simultaneous inversion of deformation and gravity changes in a horizontally layered halfspace: Evidence for magma intrusion during the 1982–1984 unrest at Campi Flegrei caldera (Italy). Earth Planet Sci Lett. doi:10.1016/j.epsl.2008.04.040 Aster RC, Meyer RP (1988) Three-dimensional velocity structure and hypocenter distribution in the Campi Flegrei caldera, Italy. Tectonophysics 149:195–218 Barberi F, Corrado G, Innocenti F, Luongo G (1984) Phlegraean Fields 1982–1984: Brief chronicle of a volcano emergency in a densely populated area. Bull Volcanol 47:175–185 Battaglia M, Roberts C, Segall P (1999) Magma intrusion beneath Long Valley caldera confirmed by temporal changes in gravity. Science 285:2119–2122 Battaglia M, Troise C, Obrizzo F, Pingue F, De Natale G (2006) Evidence for fluid migration as the source of deformation at Campi Flegrei caldera (Italy). Geophys Res Lett 33:01307. doi:10.1029/2005GL024904 Bellucci, F, Woo J, Kilburn CRJ, Rolandi G (2006) Ground deformation at Campi Flegrei, Italy: implications for hazard assessment. In: Troise C, De Natale G, Kilburn CRJ (eds) Mechanisms of activity and unrest at large calderas. Geol Soc London Spec Pub 269:141–157 Berrino G (1994) Gravity changes induced by heightmass variations at the Campi Flegrei caldera. J Volcanol Geotherm Res 61:293–309 Berrino G, Corrado G, Luongo G, Toro B (1984) Ground deformation and gravity changes accompanying the Pozzuoli uplift. Bull Volcanol 47:187–200 Bianchi R, Coradini A et al (1987) Modelling of surface ground deformation in volcanic areas: the 1970–1972 and 1982–1984 crises of Campi Flegrei, Italy. J Geophys Res 92:14139–14150 Billington EW, Tate A (1981) The physics of deformation and flow. McGraw-Hill, New York Bull Volcanol Bonafede M (1991) Hot fluid migration: an efficient source of ground deformation; application to the 1982–1985 crisis at Campi Flegrei—Italy. J Volcanol Geotherm Res 48:187–198 Bonafede M, Dragoni M, Quareni F (1986) Displacement and stress field produced by a centre of dilation and by a pressure source in a viscoelastic halfspace: Application to the study of ground deformation and seismic activity at Campi Flegrei, Italy. Geophys J R Astron Soc 87:455–485 Carter NL, Tsenn MC (1987) Flow properties of continental lithosphere. Tectonophysics 136:27–63 Cioni R, Corazza E, Marini L (1984) The gas/steam ratio as indicator of heat transfer at the Solfatara fumaroles, Phlegrean Fields (Italy). Bull Volcanol 47:295–302 Crisp JA (1984) Rates of magma emplacement and volcanic output. J Volcanol Geotherm Res 20:177–211 Cubellis E, Di Donna G, Luongo G, Mazzarella A (2002) Simulating the mechanism of magmatic processes in the Campi Flegrei area (southern Italy) by Lorenz equations. J Volcanol Geotherm Res 115:337–347 Deino AL, Orsi G, de Vita S, Piochi M (2004) The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera, Italy) assessed by 40Ar/39Ar dating method. J Volcanol Geotherm Res 133:157–170 De Natale G, Pingue F (1993) Ground deformations in collapsed caldera structures. J Volcanol Geotherm Res 57:19–38 De Natale G, Pingue F, Allard P, Zollo A (1991) Geophysical and geochemical modelling of the Campi Flegrei caldera. J Volcanol Geotherm Res 48:199–222 De Natale G, Troise C, Pingue F (2001) A mechanical fluid-dynamical model for ground movements at Campi Flegrei caldera. J Geodynam 32:487–517 De Natale G, Troise C, Pingue F, Mstrolorenzo G, Pappalardo L, Battaglia M, Boschi E (2006) The Campi Flegrei caldera: unrest mechanisms and hazards. In: Troise C, De Natale G, Kilburn CRJ (eds) Mechanisms of activity and unrest at large calderas. Geol Soc London Spec Pub 269:25–45 De Vivo B, Rolandi G, Gans PB, Calvert A, Bohrson WA, Spera FJ, Belkin HE (2001) New constraints on the pyroclastic eruptive history of the Campanian volcanic plain (Italy). Mineral Petrol 73:47–65. doi:10.1007/s007100170010 Dvorak JJ, Mastrolorenzo G (1991) The mechanism of recent vertical crustal movements in Campi Flegrei caldera, southern Italy. Geol Soc Am Spec Pap 263:1–48 Ferrucci F, Hirn A, Virieux J, De Natale G, Mirabile L (1992) P-SV conversions at a shallow boundary beneath Campi Flegrei caldera (Naples, Italy): Evidence for the magma chamber. J Geophys Res 97:15351–15359 Folch A, Martí J (1998) The generation of overpressure in felsic magma chambers by replenishment. Earth Planet Sci Lett 163:301–314 Gaeta FS, De Natale G et al (1998) Genesis and evolution of unrest episodes at Campi Flegrei caldera: The role of thermal fluiddynamical processes in the geothermal system. J Geophys Res 103:20921–20933 Gottsmann J, Rymer H, Berrino G (2006) Unrest at the Campi Flegrei caldera (Italy): A critical evaluation of source parameters from geodetic data inversion. J Volcanol Geotherm Res 150:132–145 Gudmundsson A, Brenner SL (2005) On the conditions of sheet injections and eruptions in stratovolcanoes. Bull Volcanol 67:768–782 Haimson BC, Rummel F (1982) Hydrofracturing stress measurements in the Iceland Research Drilling Project drill hole at Reydarfjordur, Iceland. J Geophys Res 87:6631–6649 Hansen FD, Carter NL (1983) Semibrittle creep of dry and wet westerly granite at 1,000 MPa. 24th US Symposium on Rock Mechanics, Texas A&M, pp 429–447 Hill D (1992) Temperatures at the base of the seismogenetic crust beneath Long Valley caldera, California, and Phlegrean Fields caldera, Italy. In: Gasparini P, Scarpa R, Aki K (eds) Volcanic Seismology. IAVCEI Proc Volcanology 3:432–461 Jaeger JC, Cook NGW (1969) Fundamentals of rocks mechanics. Chapman and Hall, London Jellinek MA, De Paolo DJ (2003) A model for the origin of large silicic magma chambers, precursors of caldera forming eruptions. Bull Volcanol 65:363–381 Johnson AM (1970) Physical processes in geology. Freeman Cooper & Company, San Francisco Judenherc S, Zollo A (2004) The Bay of Naples (southern Italy): Constraints on the volcanic structures inferred from dense seismic survey. J Geophys Res 109:B10312. doi:10.1029/ 2003JB002876 Lima A, De Vivo B, Spera FJ, Bodnar RJ, Milia A, Nunziata C, Belkin HE, Cannatelli C (2009) Thermodynamic model for uplift and deflation (bradyseism) associated with magmatichydrothermal activity at Campi Flegrei (Italy). Earth Sci Rev 97:44–58 Lirer L, Rolandi G, Di Vito MA, Mastrolorenzo G (1987) L’eruzione del Monte Nuovo (1538) nei Campi Flegrei. Boll Soc Geol It 106:447–460 Mangiacapra A, Moretti R, Rutherford M, Civetta L, Orsi G, Papale P (2008) The deep magmatic system of the Campi Flegrei caldera (Italy). Geophys Res Lett 35:L21304. doi:10.1029/2008GL035550 Martì J, Folch A (2005) Anticipating volcanic eruptions. In: Martì J, Ernst GG (eds) Volcanoes and environment. Cambridge Univ Press, Cambridge, pp 90–120 McGarr (1976) Seismic moment and volume changes. J Geophys Res 81:1487–1494 McKee C et al (1995) The 1994 eruption at Rabaul volcano, Papua New Guinea, Paper presented at the General Assembly, Int Union Geod Geophys, Boulder CO Mogi K (1958) Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them. Bull Earthquake Res Inst 36:99–134 Morhange C, Bourciern M, Laborel J, Gialannella C, Goiran JP, Crimaco L, Vecchi L (1999) New data on historical relative sea level movements in Pozzuoli Phlaegrean Fields, southern Italy. Physics Chem Earth A24:349–354 Morhange C, Marriner N, Laborel J, Todesco M, Oberlin C (2006) Rapid sea-level movements and noneruptive crustal deformations in the Phlaegrean Fields caldera, Italy. Geology 34:93–96 Nicolosi I, Speranza F, Chiappini M (2006) Ultrafast oceanic spreading of the Marsili Basin, southern Tyrrhenian Sea: Evidence from magmatic anomaly analysis. Geology 34:717–720 Orsi G, D’Antonio M, de Vita S, Gallo G (1992) The Neapolitan Yellow Tuff, a large-magnitude trachytic phreatoplinian eruption: Eruptive dynamics, magma withdrawal and caldera collapse. J Volcanol Geotherm Res 53:275–287 Orsi G, Di Vito M, de Vita S (1996) The restless, resurgent Campi Flegrei nested caldera (Italy): Constraints on its evolution and configuration. J Volcanol Geotherm Res 74:179–214 Orsi G, Civetta L, Del Gaudio S, de Vita S, Di Vito MA, Isaia R, Petrazzuoli SM, Ricciardi GP, Ricco C (1999) Short-term round deformations and seismicity in the resurgent Campi Flegrei caldera (Italy): An example of active block-resurgence in a densely populated area. J Volcanol Geotherm Res 91:415–451 Papanikolaou ID, Roberts GP (2007) Geometry, kinematics and deformation rates along the active normal fault system in the southern Apennines: Implications for fault growth. J Struct Geol 29:166–188 Pappalardo L, Piochi M, D’Antonio M, Civetta L, Petrini R (2002) Evidence for multi-stage magmatic evolution during the past 60 kyr at Campi Flegrei (Italy) deduced from Sr, Nd and Pb isotope data. J Petrol 43:1415–1434 Parascandola A (1947) I fenomeni bradisismici del Serapeo di Pozzuoli. Naples, privately published, 156 pp Pinel V, Jaupart C (2003) Magma chamber behaviour beneath a volcanic edifice. J Geophys Res 108:2072. doi:10.1029/2002JB001751 Piochi M, Mastrolorenzo G, Pappalardo L (2005) Magma ascent and eruptive processes from textural and compositional features of Monte Nuovo pyroclastic products, Campi Flegrei, Italy. Bull Volcanol 67:663–678 Presti D, Troise C, De Natale G (2004) Probabilistic location of seismic sequences in heterogeneous media. B-11 Seismol Soc Am 94:2239–2253 Quareni F (1990) Finite element deformation of an elastic, nonuniform medium produced by a dilating or pressurised magma chamber. Geophys J Int 101:243–249 Rabaute A, Yven B, CheliniW, ZamoraM(2003) Subsurface geophysics of Phlegrean Fields: New insights from downhole measurements. J Geophys Res 108:2171. doi:10.1029/20015B001436 Rayleigh L (1916) On convection currents in a horizontal layer of fluid when the higher temperature is on the other side. Philos Mag 32:529–543 Roberts GP (2006) Multi-seismic cycle velocity and strain fields for an active normal fault system, central Italy. Earth Planet Sci Lett 251:44–51 Rolandi G, Bellucci F, Heizler MT, Belkin HE, De Vivo B (2003) Tectonic controls on the genesis of ignimbrites from the Campanian Volcanic Zone, southern Italy. Mineral Petrol 79:3–31 Rosi M, Sbrana A (1987) Phlegrean fields. Rosi M, Sbrana A (eds) (1987) Phlegrean fields. Consig Naz Ric, Quadermi de la Ricerra Scientifica 114:1–175 Saccorotti G, Petrosino S, Bianco F, Castellano M, Galluzzo D, La Rocca M, Del Pezzo E, Maccarelli L, Cusano P (2007) Seismicity associated with the 2004–2006 renewed ground uplift at Campi Flegrei Caldera, Italy. Phys Earth Planet Int 165:14–24 Scandone R, Cashman KV, Malone SD (2007) Magma supply, magma ascent and the style of volcanic eruptions. Earth Planet Sci Lett 253:513–529 Smith RL (1979) Ash-flow magmatism. Geol Soc Am Spec Pap180:1–27 Spera FJ (2000) Physical properties of magma. In: Sigurdsson H, Houghton B, McNutts S, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, San Diego, pp 171–190 Trasatti E, Giunchi C, Bonafede M (2005) Structural and rheological constraints on source depth and overpressure estimates at Campi Flegrei caldera, Italy. J Volcanol Geotherm Res 144:105–118 Troise C, De Natale G, Pingue F, Obrizzo F, De Martino P, Tammaro U, Boschi E (2007) Renewed ground uplift at Campi Flegrei caldera (Italy): New insight on magmatic processes and forecast. Geophys Res Lett 34:L03301. doi:10.1029/2006GL028545 Turcotte DL, Schubert TG (2001) Geodynamics. Cambridge University Press, New York Vanorio T, Virieux J, Capuano P, Russo G (2005) Three-dimensional seismic tomography from P wave and S wave microearthquake travel times and rock physics characterisation of the Campi Flegrei caldera. J Geophys Res 110:B03201. doi:10.1029/ 2004JB003102 Vinciguerra S, Trovato C, Meredith PG, Bensos PM, Troise C, De Natale G (2006) Understanding the seismic velocity structure of Campi Flegrei caldera (Italy): From the laboratory to the field scale. Pure Appl Geophys 163:2205–2221 West M, Menke W, Tolstoy M, Webb S, Sohn R (2001) Magma storage beneath Axial volcano on the Juan de Fuca mid-ocean ridge. Nature 413:833–836 Wohlenberg J (1982) Density of rocks. In: Angenheister G (ed) Landolt-Bornstein, numerical data and functional relationships in science and technology. New series, group V, volume 1a, physical properties of rocks. Springer-Verlag, Berlin, pp 113–119 Wohletz K, Civetta L, Orsi G (1999) Thermal evolution of the Phlegreaean magmatic system. J Volcanol Geotherm Res 91:381– 414 Yokoyama I, Nazzaro A (2002) Anomalous crustal movements with low seismic efficiency—Campi Flegrei, Italy and some examples in Japan. Annal Geophys 45:709–722 Zamora M, Sartoris G, Chelini W (1994) Laboratory measurements of ultrasonic wave velocities in rocks from the Campi Flegrei volcanic system and their relation to other field data. J Geophys Res 99:13553–13561 Zollo A, Gasparini P, Virieux J, le Meur H, De Natale G, Biella G, Boschi E, Captano P, de Franco R, dell’Aversana P, de Matteis R, Guerra I, Iannaccone G, Mirabile L, Vilardo G (1996) Seismic evidence for a low-velocity zone in the upper crust beneath Mount Vesuvius. Science 274:592–594 Zollo A, Judenherc S, Auger E, D’Auria L, Virieux J, Capuano P, Chiarabba C, de Franco R, Makris J, Nichelini A, Musacchio G (2003) Evidence for the buried rim of Campi Flegrei caldera from 3-D active seismic imaging. Geophys Res Lett 30:2002. doi:10.1029/2003GL018173 Zollo A, Maercklin N, Vassallo M, Dello Iacono D, Virieux J, Gasparini P (2008) Seismic reflections reveal a massive melt layer feeling Campi Flegrei caldera. Geophys Res Lett 35: L12306. doi:10.1029/2008GL034242en
dc.description.obiettivoSpecifico3.6. Fisica del vulcanismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorCarlino, S.en
dc.contributor.authorSomma, R.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0002-3924-3881-
crisitem.author.orcid0000-0002-2227-6054-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Carlino_Somma_2010.pdf693.75 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

15
checked on Jan 22, 2021

Page view(s) 50

288
checked on Apr 17, 2024

Download(s)

34
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric