Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6079
DC FieldValueLanguage
dc.contributor.authorallLa Rocca, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallGalluzzo, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallMalone, S.; Department of Earth and Space Sciences, University of Washington, USAen
dc.contributor.authorallMcCausland, W.; Cascade Volcano Observatory, U.S. Geological Survey, Vancouver, USAen
dc.contributor.authorallDel Pezzo, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2010-07-09T14:59:56Zen
dc.date.available2010-07-09T14:59:56Zen
dc.date.issued2010-06-05en
dc.identifier.urihttp://hdl.handle.net/2122/6079en
dc.description.abstractWe describe a new method to estimate the S‐P time of tremor‐like signals and its application to the nonvolcanic tremor recorded in July 2004 by three dense arrays in Cascadia. The cross correlation between vertical and horizontal components indicates that very often the high‐amplitude tremor signal contains sequences of P and S waves characterized by constant S‐P times (TS‐P) in the range 3.5–7 s. A detailed observation of the three component seismograms stacked over the array stations confirms the presence of P and S wave sequences. The knowledge of the TS‐P poses a strong constrain on the source‐array distance, which dramatically reduces the uncertainty on source locations when used with more traditional array processing techniques. Data were analyzed using the zero lag cross‐correlation technique (ZLCC) to estimate the propagation properties of the most correlated phases in the wavefield. Detailed polarization analyses were computed using the covariance matrix method in the time domain. Polarization parameters, joint with the results of ZLCC, allows for the discrimination between P and S coherent waves. Results show that the tremor wavefield is composed mostly by shear waves, although a consistent amount of coherent P waves is often observable. The comparison of the back azimuth at the three arrays indicate that the source of deep tremor migrates over a wide area, and often many independent sources located far from each other are active at the same time. The tremor source was located by a probabilistic method that uses the results of ZLCC, given a velocity model. When available, the inclusion of the TS‐P time in the location procedure strongly reduces the depth range, with a distribution of hypocenters very near the subduction interface. This result, significantly different compared with previous less precise locations, makes the Cascadia nonvolcanic tremor more similar to the nonvolcanic tremor recorded in Japan, at least in cases of measurable TS‐P. The polarization azimuth aligned with the slow slip direction and the source located on the plate interface indicate that deep tremor and slow slip are two different manifestations of a common phenomenon related with the subduction dynamics.en
dc.language.isoEnglishen
dc.publisher.nameThe American Geophysical Unionen
dc.relation.ispartofJournal of Geophysical Researchen
dc.relation.ispartofseries/115 (2010)en
dc.subjectArray analysisen
dc.subjectsource locationen
dc.subjectdeep tremoren
dc.subjectCascadiaen
dc.titleArray analysis and precise source location of deep tremor in Cascadiaen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysisen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniquesen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonicsen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processesen
dc.identifier.doi10.1029/2008JB006041en
dc.relation.referencesDel Pezzo, E., M. La Rocca, and J. Ibanez (1997), Observation of high frequency waves using dense arrays at Teide Volcano, Bull. Seismol. Soc. Am., 87, 1637–1647. Dragert, H., K. Wang, and T. S. James (2001), A silent slip event on the deeper Cascadia subduction interface, Science, 292, 1525–1528, doi:10.1126/science.1060152. Frankel, A., S. Hough, P. Friberg, and R. Busby (1991), Observations of Loma Prieta aftershocks from a dense array in Sunnyvale, California, Bull. Seismol. Soc. Am., 81, 1900–1922. Gomberg, J., J. L. Rubinstein, Z. Peng, K. C. Creager, J. E. Vidale, and P. Bodin (2007), Widespread triggering of nonvolcanic tremor in California, Science, doi:10.1126/science.1149164. Jurkevics, A. (1988), Polarization analysis of three‐component array data, Bull. Seismol. Soc. Am., 78(5), 1725–1743. Kao, H., S.‐J. Shan, H. Dragert, G. Rogers, J. F. Cassidy, andK. Ramachandran (2005), A wide depth distribution of seismic tremors along the northern Cascadia margin, Nature, 436, doi:10.1038/nature03903. Kao, H., S.‐J. Shan, H. Dragert, G. Rogers, J. F. Cassidy, K. Wang, T. S. James, and K. Ramachandran (2006), Spatial‐temporal patterns of seismic tremors in northern Cascadia, J. Geophys. Res., 111, B03309, doi:10.1029/2005JB003727. Kao, H., S. Shan, G. Rogers, and H. Dragert (2007), Migration characteristics of seismic tremors in the northern Cascadia margin, Geophys. Res. Lett. 34, L03304, doi:10.1029/2006GL028430. La Rocca, M., G. Saccorotti, E. Del Pezzo, and J. Ibanez (2004), Probabilistic source location of explosion quakes at Stromboli Volcano estimated with multiple array data, J. Volcanol. Geotherm. Res., 131, 123–142, doi:10.1016/S0377-0273(03)00321-4. La Rocca, M., W. McCausland, D. Galluzzo, S. Malone, G. Saccorotti, and E. Del Pezzo (2005), Array measurements of deep tremor signals in the Cascadia subduction zone, Geophys. Res. Lett., 32, L21319, doi:10.1029/ 2005GL023974. La Rocca, M., D. Galluzzo, S. Malone, W. McCausland, G. Saccorotti, and E. Del Pezzo (2008), Testing of small‐aperture array analysis using welllocated earthquakes, and application to the location of deep tremor, Bull. Seismol. Soc. Am., 98(2), doi:10.1785/0120060185. La Rocca, M., K. C. Creager, D. Galluzzo, S. Malone, J. E. Vidale, J. R. Sweet, and A. G. Wech (2009), Cascadia tremor located near plate interface constrained by S minus P wave times, Science, 323, 620–623, doi:10.1126/science.1167112. McCausland, W. (2006), Tracking subduction tremor in Cascadia using regional network and small aperture seismic array data, Ph.D. dissertation, Univ. of Wash., Seattle. McCausland, W., S. Malone, and D. Johnson (2005), Temporal and spatial occurrence of deep nonvolcanic tremor: From Washington to northern California, Geophys. Res. Lett., 32, L24311, doi:10.1029/2005GL024349. McCausland, W., K. C. Creager, M. La Rocca, and S. Malone (2010), Short‐term and long‐term tremor migration patterns of the Cascadia 2004 tremor and slow slip episode using small aperture seismic arrays, J. Geophys. Res., doi:10.1029/2008JB006063, in press. Melbourne, T. I., W. M. Szeliga, M. M. Miller, and V. M. Santillan (2005), Extent and duration of the 2003 Cascadia slow earthquake, Geophys. Res. Lett., 32, L04301, doi:10.1029/2004GL021790. Nadeau, R. M., and D. Dolenc (2005), Nonvolcanic tremors deep beneath the San Andreas fault, Science, 307, 389, doi:10.1126/science.1107142. Obara, K. (2002), Nonvolcanic deep tremor associated with subduction in southwest Japan, Science, 296, 1679–1681, doi:10.1126/science.1070378. Obara, K., and H. Hirose (2006), Nonvolcanic deep low‐frequency tremors accompanying slow slips in the southwest Japan subduction zone, Tectonophysics, 417, 33–51, doi:10.1016/j.tecto.2005.04.013. Payero, J. S., V. Kostoglodov, N. Shapiro, T. Mikumo, A. Iglesias, X. Pérez‐ Campos, and R. W. Clayton (2008), Nonvolcanic tremor observed in the Mexican subduction zone, Geophys. Res. Lett., 35, L07305, doi:10.1029/2007GL032877. Preston, L. A., K. C. Creager, R. S. Crosson, T. M. Brocher, and A. M. Trehu (2003), Intraslab earthquakes: Dehydration of the Cascadia slab, Science, 302, 1197–1200, doi:10.1126/science.1090751. Rogers, G., and H. Dragert (2003), Episodic tremor and slip on the Cascadia subduction zone: The chatter of silent slip, Science, 300, 1942–1943, doi:10.1126/science.1084783. Royle, G. T., A. J. Calvert, and H. Kao (2006), Observations of nonvolcanic tremor during the northern Cascadia slow‐slip event in February 2002, Geophys. Res. Lett., 33, L18313, doi:10.1029/2006GL027316. Rubinstein, J. L., M. La Rocca, J. E. Vidale, K. C. Creager, and A. G. Wech (2008), Tidal modulation of nonvolcanic tremor, Science, 319, 186–189, doi:10.1126/science.1150558. Saccorotti, G., and E. Del Pezzo (2000), A probabilistic approach to the inversion of data from a seismic array and its application to volcanic signals, Geophys. J. Int., 143, 249–261, doi:10.1046/j.1365- 246x.2000.00252.x. Schwartz, S. Y., and J. M. Rokosky (2007), Slow slip events and seismic tremor at circum‐pacific subduction zones, Rev. Geophys., 45, RG3004, doi:10.1029/2006RG000208. Shelly, D. R., G. C. Beroza, and S. Ide (2006), Low‐frequency earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip, Nature, 442, 188–191, doi:10.1038/nature04931. Wech, A. G., and K. C. Creager (2007), Cascadia tremor polarization evidence for plate interface slip, Geophys. Res. Lett., 34, L22306, doi:10.1029/2007GL031167. Wessel, P., and W. H. F. Smith (1998), New, improved version of the Generic Mapping Tools released, Eos Trans. AGU, 79(47), 579, doi:10.1029/98EO00426.en
dc.description.obiettivoSpecifico3.2. Tettonica attivaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorLa Rocca, M.en
dc.contributor.authorGalluzzo, D.en
dc.contributor.authorMalone, S.en
dc.contributor.authorMcCausland, W.en
dc.contributor.authorDel Pezzo, E.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentDepartment of Earth and Space Sciences, University of Washington, USAen
dc.contributor.departmentCascade Volcano Observatory, U.S. Geological Survey, Vancouver, USAen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniverista della Calabria, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptDepartment of Earth and Space Sciences, University of Washington Seattle, Washington, USA.-
crisitem.author.deptU.S. Geological Survey, Cascades Volcano Observatory, Vancouver, Washington, USA.-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0002-8952-9271-
crisitem.author.orcid0000-0002-6981-5967-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
larocca.pdf2.16 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

22
checked on Feb 10, 2021

Page view(s) 50

206
checked on Apr 17, 2024

Download(s)

39
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric