Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6064
DC FieldValueLanguage
dc.contributor.authorallPasquale, G.; Dipartimento di Studi Geologici ed Ambientali,Università degli Studi del Sannio, Benevento, Italyen
dc.contributor.authorallDe Matteis, R.; Dipartimento di Studi Geologici ed Ambientali,Università degli Studi del Sannio, Benevento, Italyen
dc.contributor.authorallRomeo, A.; AMRA Scarl, Napoli, Italyen
dc.contributor.authorallMaresca, R.; Dipartimento di Studi Geologici ed Ambientali,Università degli Studi del Sannio, Benevento, Italyen
dc.date.accessioned2010-06-30T10:13:18Zen
dc.date.available2010-06-30T10:13:18Zen
dc.date.issued2009en
dc.identifier.urihttp://hdl.handle.net/2122/6064en
dc.description.abstractThe goal of this study was to estimate the stress field acting in the Irpinia Region, an area of southern Italy that has been struck in the past by destructive earthquakes and that is now characterized by low to moderate seismicity. The dataset are records of 2,352 aftershocks following the last strong event: the 23 November 1980 earthquake (M 6.9). The earthquakes were recorded at seven seismic stations, on average, and have been located using a three-dimensional (3D) P-wave velocity model and a probabilistic, non-linear, global search technique. The use of a 3D velocity model yielded amore stable estimation of take-off angles, a crucial parameter for focal mechanism computation. The earthquake focal mechanisms were computed from the P-wave first-motion polarity data using the FPFIT algorithm. Fault plane solutions show mostly normal component faulting (pure normal fault and normal fault with a strikeslip component). Only some fault plane solutions show strike-slip and reverse faulting. The stress field is estimated using the method proposed by Michael (J Geophys Res 92:357–368, 1987a) by inverting selected focal mechanisms, and the results show that the Irpinia Region is subjected to a NE–SW extension with horizontal σ3 (plunge 0◦, trend 230◦) and subvertical σ1 (plunge 80◦, trend 320◦), in agreement with the results derived from other stress indicators.en
dc.language.isoEnglishen
dc.publisher.nameSPRINGERen
dc.relation.ispartofJOURNAL OF SEISMOLOGYen
dc.relation.ispartofseries/13 (2009)en
dc.subjectIrpinia Regionen
dc.subjectSeismicityen
dc.subjectFocal mechanismsen
dc.subjectStress inversionen
dc.titleEarthquake focal mechanisms and stress inversion in the Irpinia Region (southern Italy)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber107-124en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamicsen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.05. Stressen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonicsen
dc.identifier.doi10.1007/s10950-008-9119-xen
dc.relation.referencesAmanti M, Bontempo R, Cara P, Conte G, Di Bucci D, Lembo P, Pantaleone NA, Ventura R (2002) Carta Geologica d’Italia Interattiva. 1:100000, SGN, SSN, ANAS, 3 CD-ROM Amato A, Montone P (1997) Present-day stress field and active tectonics in southern peninsular Italy. Geophys J Int 130:519–534. doi:10.1111/j.1365-246X. 1997.tb05666.x Amato A, Chiarabba C, Malagnini L, Selvaggi G (1992) Three-dimensional P-velocity structure in the region of the Ms = 6.9 Irpinia, Italy, normal faulting earthquake. Phys Earth Planet Inter 75:111–119. doi:10.1016/0031-9201(92)90122-C Angelier J (1990) Inversion of field data in fault tectonics to obtain the regional stress—III. A new rapid direct inversion method by analytic means. Geophys J Int 103:363–376. doi:10.1111/j.1365-246X.1990. tb01777.x Anzidei M, Baldi P, Casula G, Galvani A, Mantovani E, Pesci A, et al. (2001) Insights into present-day crustal motion in the central Mediterranean area from GPS surveys. Geophys J Int 146:98–110. doi:10.1046/ j.0956-540x.2001.01425.x Bernard P, Zollo A (1989) The Irpinia (Italy) 1980 earthquake: detailed analysis of a complex normal faulting. J Geophys Res 94:1631–1647. doi:10. 1029/JB094iB02p01631 Bott MHP (1959) The mechanisms of oblique slip faulting. Geol Mag 96:109–117 D’Argenio B, Pescatore TS, Scandone P (1974) Schema geologico dell’Appennino Meridionale (Campania e Lucania). Atti del Convegno: Moderne Vedute sulla Geologia dell’Appennino Meridionale. Accad Naz Lincei (Rome) 183:49–72 Del Pezzo E, Iannaccone G, Martini M, Scarpa R (1983) The 23 November 1980 southern Italy earthquake. Bull Seismol Soc Am 73:187–200 Deschamps A, King GCP (1984) Aftershocks of the Campania–Lucania (Italy) earthquake of the 23 November 1980. Bull Seismol Soc Am 74:2483–2517 Ellsworth WL, Zhonghuai X (1980) Determination of the stress tensor from focal mechanism data. Eos Trans AGU 61:1117 (abstract) Frepoli A, Amato A (2000) Spatial variation in stress in peninsular Italy and Sicily from background seismicity. Tectonophysics 317:109–124. doi:10.1016/ S0040-1951(99)00265-6 Gephart JW, Forsyth DW (1984) An improved method for determining the regional stress tensor using earthquake focal mechanism data: application to the San Fernando earthquake sequence. J Geophys Res 89:9305–9320. doi:10.1029/JB089iB11p09305 Giardini A (1993) Teleseismic observation of the November 23 1980, Irpinia earthquake. Ann Geofis XXXVI:17–25. Improta L, Iannaccone G, Capuano P, Zollo A, Scandone P (2000) Inference on the upper crustal structure of the Southern Apennines (Italy) from seismic refraction investigations and subsurface data. Tectonophysics 317:273–297. doi:10.1016/S0040- 1951(99)00267-X Improta L, Bonagura M, Capuano P, Iannaccone G (2003) An integrated geophysical investigation of the upper crust in the epicentral area of the 1980,M= 6.9, Irpinia earthquake (Southern Italy). Tectonophysics 361:139– 169. doi:10.1016/S0040-1951(02)00588-7 Lomax A, Virieux J, Volant P, Thierry BC (2000). Probabilistic earthquake location in 3D and layered models. Kluwer Academic, Dordrecht, pp 101–134 McGarr A, Gay NC (1978) State of stress in the Earth’s crust. Annu Rev Earth Planet Sci 6:405–436. doi:10.1146/annurev.ea.06.050178.002201 McKenzie DP (1969) The relation between fault plane solutions for earthquakes and the directions of the principal stresses. Bull Seismol Soc Am 59:591–601 McKenzie DP (1972) Active tectonics of the Mediterranean region. Geophys J R Astron Soc 30:109–185 Menardi A, Rea G (2000) Deep structure of the Campania–Lucania arc (Southern Apennines, Italy). Tectonophysics 324:239–265. doi:10.1016/S0040-1951 (00)00137-2 Michael AJ (1984) Determination of stress from slip data: faults and folds. J Geophys Res 89:11517–11526. doi:10.1029/JB089iB13p11517 Michael AJ (1987a) Use of the mechanisms to determine stress: a control study. J Geophys Res 92:357–368. doi:10.1029/JB092iB01p00357 Michael AJ (1987b) Stress rotation during the Coalinga aftershock sequence. J Geophys Res 92:7963–7979. doi:10.1029/JB092iB08p07963 Montone P, Amato A, Pondrelli S (1999) Active stress map of Italy. J Geophys Res 104:25595–25610. doi:10.1029/1999JB900181 Pantosti D, Valensise G (1990) Faulting mechanism and complexity of the November 23, 1980, Campania– Lucania earthquake, inferred from surface observations. J Geophys Res 95:15319–15341. doi:10.1029/ JB095iB10p15319 Patacca E, Scandone P (1989) Post-Tortonian mountain building in the Apennines: the role of the passive sinking of a relic lithospheric slab. In: Boriani, Bonafede M, Piccado GB, Vai eGB (eds) The lithosphere in Italy. Acc Naz Lincei 80:157–176 Patacca E, Sartori R, Scandone P (1990) Tyrrhenian basin and Apenninic arc: kinematic relations singe Late Tortonian times. Mem Soc Geol Ital 5:425–451 Podvin P, Lecomte I (1991) Finite difference computation of traveltimes in very contrasted velocity models: a massively parallel approach and its associated tools. Geophys J Int 105:271–284. doi:10.1111/j.1365- 246X.1991.tb03461.x Reasemberg P, Oppenheimer D (1985) Fpfit, Fpplot and Fppage. Fortran computer programs for calculating and displaying earthquake fault-plane solutions. U.S. Geol. Surv., Open-File Report 85–739 Rivera L, Cisternas A (1990) Stress tensor and fault plane solution for a population of earthquakes. Bull Seismol Soc Am 80:600–614 Romeo A, De Matteis R, Pasquale G, Iannaccone G, Zollo A (2007). Crustal structure and stress field for southern Apennines Region from local earthquakes. 24th International Union of Geodesy and Geophysics General Assembly, Perugia, Italy, July 2–13 2007 Roure F, Casero P, Vially R (1991) Growth processes and melange formation in the Southern Apennines accretionary wedge. Earth Planet Sci Lett 102:395–412. doi:10.1016/0012-821X(91)90031-C Tarantola A (1987) Inverse problem theory: methods for data fitting and model parameter estimation. Elsevier, Amsterdam Tarantola A, Valette B (1982) Inverse problems = quest for information. J Geophys Res 50:159–170 Tiberti MM, Orlando L, Di Bucci D, Bernabini M, Parotto M (2005) Regional gravity anomaly map and crustal model of the Central-Southern Apennines (Italy). J Geodyn 40:73–91. doi:10.1016/j.jog.2005. 07.014 Westaway R, Jackson JA (1987) The earthquake of 1980 November 23 in Campania–Basilicata (Southern Italy). Geophys J R Astron Soc 90:375-443 Yamaji A (2000) The multiple inverse method: a new technique to separate stresses from heterogeneous fault-slip data. J Struct Geol 22:441–452. doi:10.1016/S0191-8141(99)00163-7en
dc.description.obiettivoSpecifico3.1. Fisica dei terremotien
dc.description.obiettivoSpecifico3.2. Tettonica attivaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorPasquale, G.en
dc.contributor.authorDe Matteis, R.en
dc.contributor.authorRomeo, A.en
dc.contributor.authorMaresca, R.en
dc.contributor.departmentDipartimento di Studi Geologici ed Ambientali,Università degli Studi del Sannio, Benevento, Italyen
dc.contributor.departmentDipartimento di Studi Geologici ed Ambientali,Università degli Studi del Sannio, Benevento, Italyen
dc.contributor.departmentAMRA Scarl, Napoli, Italyen
dc.contributor.departmentDipartimento di Studi Geologici ed Ambientali,Università degli Studi del Sannio, Benevento, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDipartimento di Studi Geologici ed Ambientali,Università degli Studi del Sannio, Benevento, Italy-
crisitem.author.deptGeDipartimento di Studi ologici e Ambientali, Università degli Studi del Sannio, Benevento,Italy-
crisitem.author.deptDipartimento di Geologia e Geofisica & Centro Interdipartimentale per il Rischio Sismico e Vulcanico, Università di Bari, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0003-2821-0539-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
PasDeM-09.pdf826.26 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

14
checked on Feb 10, 2021

Page view(s) 50

205
checked on Apr 17, 2024

Download(s)

43
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric